Abstract:
An ion implanter performs ion implantation by irradiating a wafer having a notch at its outer peripheral region by an ion beam. In ion implanter, a twist angle adjustment mechanism is configured to adjust a twist angle, an aligner is configured to adjust an alignment angle, a wafer transfer device is configured to transfer the wafer between the aligner and the twist angle adjustment mechanism, an image processing device is configured to detect the twist angle of the wafer on the twist angle adjustment mechanism, and a control device is configured to carry out a twist control in which the wafer is rotated by the twist angle adjustment mechanism by an angle obtained from a first difference between the detected twist angle and the alignment angle and a second difference between the alignment angle and a target twist angle given as one of ion implantation conditions.
Abstract:
Ion sources, systems and methods are disclosed. In some embodiments, the ion sources, systems and methods can exhibit relatively little undesired vibration and/or can sufficiently dampen undesired vibration. This can enhance performance (e.g., increase reliability, stability and the like). In certain embodiments, the ion sources, systems and methods can enhance the ability to make tips having desired physical attributes (e.g., the number of atoms on the apex of the tip). This can enhance performance (e.g., increase reliability, stability and the like).
Abstract:
An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (
Abstract:
An ion implanter includes an implantation chamber into which an ion beam is introduced, a holder for holding substrates on two columns of a first column and a second column in an X-direction, and a holder driving unit having a function of setting the holder in a horizontal state and then positioning the holder in a substrate exchange position and a function of setting the holder in a standing state and then driving reciprocally and linearly the holder along the X-direction in an irradiation area of the ion beam. Also, the ion implanter includes two load lock mechanisms, and two substrate carrying units equipped with arms, which carry the substrates between the load lock mechanisms and a substrate exchange position respectively, every two arms.
Abstract:
A workpiece support having alignment features to allow the proper alignment of the shadow mask to the workpiece is provided. The alignment features include tactile sensors, so as to measure the pressure being applied to each alignment feature. Based on these pressure readings, a determination can be made as to whether the workpiece is properly aligned with the shadow mask. In some embodiments, corrective actions may be initiated if a determination is made that the workpiece is not properly aligned.
Abstract:
A method of controlling particle absorption on a wafer sample being inspected by a charged particle beam imaging system prevents particle absorption by grounding the wafer sample and kept electrically neutral during the transfer-in and transfer-out process.
Abstract:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
Abstract:
The present disclosure significantly reduces the waiting time from inserting a specimen holder into an electron microscope until high quality data acquisition is possible. Characterizing the present disclosure, it is a specimen holder partly made of low thermal expansion material. The low thermal expansion material can be any of group 4, 5 or 6 in the periodic table of the elements.
Abstract:
A system and methods are provided for mitigating or removing workpiece surface contaminants or conditions. Methods of the invention provide treatment of the wafer surface to provide a known surface condition. The surface condition can then be maintained during and following implantation of the workpiece surface with a dopant.
Abstract:
A patterning device handling apparatus for use in charged particle beam imaging is disclosed. The disclosed patterning device handling apparatus comprises a first gripping member and a second gripping member. The first gripping member is equipped with a plurality of first positioning projections, and the second gripping member is equipped with a plurality of second positioning projections. When the patterning device is held at one angle, the first positioning projections abut against one edge of the patterning device and the second positioning projections abut against the opposite edge of the patterning device. When the patterning device is held at another angle, the first positioning projections abut against two neighboring edges of the patterning device, and the second positioning projections abut against the other two neighboring edges of the patterning device. Therefore, the disclosed patterning device handling apparatus can hold the pattering device at different angles.