Abstract:
A method of providing at least two multilayer circuit boards, combining the at least two multilayer circuit boards to form a combined multilayer circuit board, and forming multiple outer conductive vias, circuits and contacts on the combined multilayer circuit board. Each multilayer circuit board is fabricated by the steps of preparing a single-layer printed circuit board having multiple chip sections, attaching at least one chip to the corresponding chip section, attaching a frame having multiple enclosures to the single-layer printed circuit board, attaching a semi-fluid glue sheet to the frame, vacuum pressing a conductive layer on the semi-fluid glue sheet and forming multiple conductive inner vias through the multilayer circuit board. The at least two multilayer circuit boards are combined by steps of reversing one of the multilayer circuit boards and vacuum pressing other multilayer circuit boards on the reversed multilayer circuit board.
Abstract:
A printed circuit board and a manufacturing method thereof are disclosed. The method in accordance with an embodiment of the present invention includes: providing a substrate on which a first insulation layer, a first circuit pattern, a second insulation layer and a resin layer are successively laminated; boring a through-hole penetrating the substrate; forming roughness on the resin layer by a desmear process; forming a via making an electrical connection between layers through the through-hole; and forming a second circuit pattern on the resin layer having roughness formed thereon.
Abstract:
The invention provides a low energy loss, multi-layered polypropylene/metal foil product useful for further processing into printed circuit boards and antenna boards for microwave circuitry. A continuous process for manufacture of the product is described. The process comprises the steps of: providing metal foil; optionally, extrusion coating molten polypropylene upon said metal foil, to obtain a foil coated with a polypropylene foundation layer; casting a molten polypropylene tie-layer upon said metal foil or upon said coated metal foil; and laminating a polypropylene sheet on said tie layer. In the process, heat is applied to induce fusing of the layers of the multi-layered product.
Abstract:
A flexible metal foil/polyimide laminate is prepared by applying a polyamic acid varnish onto a very thin copper foil on a carrier, semi-drying the varnish, laminating a polyimide film to the varnish-coated copper foil using a hot roll press, and heat treating the laminate for solvent removal and imidization in an atmosphere having a controlled oxygen concentration. A polyimide adhesive layer resulting from the imidization of polyamic acid has a thickness of up to 6 μm, the sum of the thicknesses of the polyimide film and the polyimide adhesive layer is up to 25 μm. The polyimide adhesive layer has a Tg>400° C.
Abstract:
An opening is formed in resin 20 by a laser beam so that a via hole is formed. At this time, copper foil 22, the thickness of which is reduced (to 3 μm) by performing etching to lower the thermal conductivity is used as a conformal mask. Therefore, an opening 20a can be formed in the resin 20 if the number of irradiation of pulse-shape laser beam is reduced. Therefore, occurrence of undercut of the resin 20 which forms an interlayer insulating resin layer can be prevented. Thus, the reliability of the connection of the via holes can be improved.
Abstract:
Provided is an adhesion assisting agent fitted metal foil, comprising an adhesion assisting agent layer having a thickness of 0.1 to 10 μm on a metal whose surface has a ten-point average roughness Rz of 2.0 μm or less, wherein the adhesion assisting agent layer is formed from an adhesion assisting agent composition comprising: (A) an epoxy resin selected from the group consisting of a novolak epoxy resin and an aralkyl epoxy resin; and (C) an epoxy resin curing agent.
Abstract:
In a sheet material (1), a bonding layer (2) is provided, and then a high-strength layer (3) is laminated on the bonding layer (2). The bonding layer (2) is made of an epoxy resin being a thermosetting material. The high-strength layer (3) is made of polyimide, which is not softened at a thermosetting temperature of the epoxy resin and has a tensile rupture strength higher than that of the cured thermosetting material. Moreover, the polyimide has a tensile rupture strength of 100 MPa or higher at 23° C. and a tensile rupture elongation of 10% or higher at 23° C. Assuming that a tensile rupture strength at −65° C. is a and a tensile rupture strength at 150° C. is b, a ratio (a/b) is 2.5 or less.
Abstract:
A resin composite copper foil comprising a copper foil and a resin layer containing a block copolymer polyimide and a maleimide compound, the resin layer being formed on one surface of the copper foil, a production process thereof, a copper-clad laminate using the resin composite copper foil, a production process of a printed wiring board using the copper-clad laminate, and a printed wiring board obtained by the above process.
Abstract:
The invention relates to an adhesive composition, comprising: (A) at least one phenolic resole resin; and (B) the product made by reacting (B-1) at least one difunctional epoxy resin, with (B-2) at least one compound represented by the formula wherein in Formulae (I) and (II): G, T and Q are each independently functional groups selected from the group consisting of COOH, OH, SH, NH2, NHR1, (NHC(═NH))mNH2, R2COOH, NR12, C(O)NHR1, R2NR12, R2OH, R2SH, R2NH2 and R2NHR1, wherein R1 is a hydrocarbon group, R2 is an alkylene or alkylidene group and m is a number in the range of 1 to about 4; T can also be R1, OR1 or SO2C6H4—NH2; and Q can also be H. The invention also relates to copper foils having the foregoing adhesive composition adhered to at least one side thereof to enhance the adhesion between said foils and dielectric substrates. The invention also relates to laminates comprising copper foil, a dielectric substrate, and an adhesion-promoting layer comprising the foregoing adhesive composition disposed between and adhered to the foil and the substrate.
Abstract:
The present invention provides a laminate comprising a resin layer and a copper foil. The resin layer is made from a liquid crystalline polyester having at least one structural unit selected from a structural unit derived from aromatic diamine and a structural unit derived from aromatic amine with a phenolic hydroxyl group in an amount of 10 to 35% by mole on the basis of the total structural units in the polyester. The copper foil has a tensile modulus of 60 GPa or smaller and a tensile strength at break of 150 MPa or smaller measured after heat treatment at a temperature of 300° C. The copper-foil laminate has good flexibility and high durability with little anisotropy is provided.