Abstract:
A method of producing a capacitor for a printed circuit board includes producing high-dielectric sheets and selecting ones of the high-dielectric sheets, which are substantially free from a defect after the heat process. Each of the high-dielectric sheets is produced by providing a first electrode, forming a first sputter film on the first electrode, forming an intermediate layer on the first sputter film by calcining a sol-gel film, forming a second sputter film on the intermediate layer, and providing a second electrode on the second sputter film. The high-dielectric sheets are subjected to a heat process in which the high-dielectric sheets are subjected to a first temperature at least once and a second temperature higher than the first temperature at least once.
Abstract:
A multilayer substrate module includes a multilayer circuit substrate, a mounting land, and an input/output terminal. Inside the multilayer circuit substrate, a wiring line that connects the mounting land and the input/output terminal to each other, an inductor that defines a portion of the wiring line, a first ground conductor that is positioned on the one main surface side of the inductor, and a second ground conductor that is positioned on the other main surface side of the inductor are defined by conductor patterns. The area where inductor is located is not superposed with the area where the second ground conductor is located, when the one main surface or the other main surface of the multilayer circuit substrate is viewed in plan, the second ground conductor being closer to the layer where the inductor is located than the first ground conductor is.
Abstract:
Electronic circuits (1, 101) are disclosed. The electronic circuits comprise a first and a second integrated circuit (10a, 110a, 10b, 110b) and a printed circuit board (PCB) (15, 115). The PCB comprises dielectric layers (30a-c, 130) of polymer-based materials having different dissipation factors arranged in accordance with various embodiments for suppressing noise.
Abstract:
A capacitor having a stem that is designed to be inserted into a single, large-diameter via hole drilled in a printed circuit board is provided, wherein the stem may have conductive rings for making the positive and negative connections to the printed circuit board power distribution planes. Inside the capacitive stem, current, or at least a portion thereof, may be carried to the main body of the capacitor through low-inductance plates that are interleaved to maximize their own mutual inductance and, therefore, minimize the connection inductance. Alternatively, the capacitor may include a coaxial stem that forms a coaxial transmission line with the anode and cathode terminals forming the inner and outer conductors.
Abstract:
A multilayer wiring board includes a signal electrode, a first power supply electrode, and a ground electrode, which are connected to a first element that outputs a signal, an electrode connected to a second element that receives the signal, a ground layer that serves as a return path for a return current of the signal, a first power supply layer that is disposed adjacent to the ground layer with a dielectric layer interposed therebetween and supplies electric power to the first element, and a second power supply layer that is provided independently of the first power supply layer and supplies electric power to the second element. The first power supply layer causes the return current to return to the first element through the first power supply electrode as a displacement current between the ground layer and the first power supply layer.
Abstract:
A circuit substrate uses post-fed top side power supply connections to provide improved routing flexibility and lower power supply voltage drop/power loss. Plated-through holes are used near the outside edges of the substrate to provide power supply connections to the top metal layers of the substrate adjacent to the die, which act as power supply planes. Pins are inserted through the plated-through holes to further lower the resistance of the power supply path(s). The bottom ends of the pins may extend past the bottom of the substrate to provide solderable interconnects for the power supply connections, or the bottom ends of the pins may be soldered to “jog” circuit patterns on a bottom metal layer of the substrate which connect the pins to one or more power supply terminals of an integrated circuit package including the substrate.
Abstract:
A high-dielectric sheet for a printed circuit board includes a first electrode, a first sputter film formed on the first electrode, an intermediate layer formed on the first sputter film by calcining a sol-gel film, a second sputter film formed on the intermediate layer, and a second electrode provided on the second sputter film.
Abstract:
A direct current (DC) link capacitor module includes a printed circuit board (PCB) formed by sequentially disposing a first electrode substrate, an insulation substrate, a second electrode substrate, a third electrode substrate; a plurality of DC link capacitors connected in parallel to each of the first electrode substrate and the second electrode substrate; a plurality of first Y-capacitors connected in series to each of the first electrode substrate and the third electrode substrate, and connected in parallel to the DC link capacitors; and a plurality of second Y-capacitors connected in series to each of the first electrode substrate and the third electrode substrate, and connected in parallel to the first Y-capacitors, thereby achieving a miniaturization and facilitating a fabrication by connecting the plurality of DC link capacitors using the PCB.
Abstract:
A multi-layered ceramic package comprises: a signal layer with identified chip/device area(s) that require a supply of power; and a voltage power (Vdd) layer and a ground (Gnd) layer disposed on opposite sides directly above or below and adjacent to the signal layer and providing a first reference mesh plane and a second reference mesh plane configured utilizing a hybrid mesh scheme. The hybrid mesh scheme comprises: a full dense mesh in a first area directly above or below the identified chip/device area(s); a half dense mesh in a second area that is above or below the edge(s) of the chip/device area; and a wider mesh pitch in all other areas The Vdd traces are aligned to run parallel and adjacent to signal lines in those other areas. Wider traces are provided within the mesh areas that run parallel and adjacent to signal lines.
Abstract:
A voltage measurement circuit is operative to measure a high voltage AC signal and includes a capacitive divider circuit and a compensator circuit. The capacitive divider circuit includes first and second inputs, across which, in use, is received a high voltage AC signal and also includes second and third capacitors. First and second plates of each of the first, second and third capacitors are defined by conductive layers of a printed circuit board and the dielectric of each of the first, second and third capacitors being defined by a non-conducting part of the printed circuit board. A compensator circuit has a configurable transfer function and includes an input connected across the first and second plates of the third capacitor and an output. The compensator circuit is operative to change a voltage received at its input in accordance with the transfer function and to provide the changed voltage at its output.