Abstract:
According to one embodiment, a wiring substrate includes a second wiring layer, including a plurality of metal lands provided on a second surface of an insulating base material, and an insulating layer formed on the second surface of the insulating base material and including openings exposing the plurality of metal lands. The metal land includes a center portion with a first height and an outer peripheral portion with a second height lower than the first height, which is provided at least about the periphery of the insulating base. The openings expose the metal lands, such that the center portion of the metal land is exposed and at least a portion of the outer peripheral portion of the metal land is covered with the insulating layer.
Abstract:
To provide a wiring board excellent in connection reliability with a semiconductor chip. A first buildup layer 31 where resin insulating layers 21 and 22 and a conductor layer 24 are laminated is formed at a substrate main surface 11 side of an organic wiring board 10. The conductor layer 24 for an outermost layer in the first buildup layer 31 includes a plurality of connecting terminal portions 41 for flip-chip mounting a semiconductor chip. The plurality of connecting terminal portions 41 is exposed through an opening portion 43 of a solder resist layer 25. Each connecting terminal portion 41 includes a connection region 51 for a semiconductor chip and a wiring region 52 disposed to extend from the connection region 51 along the planar direction. The solder resist layer 25 includes, within the opening portion 43, a side-surface covering portion 55 that covers the side surface of the connecting terminal portion 41 and a projecting wall portion 56 that is integrally formed with the side-surface covering portion 55 and disposed to project so as to intersect with the connection region 51.
Abstract:
A wiring board includes: a substrate; first connection electrode portions which are disposed on a surface of the substrate and which are to be connected to individual-electrode connection terminals of an actuator via first bumps; first wires having electrical continuity with the first connection electrode portions; a second connecting electrode portion which is disposed on the surface of the substrate and which is to be connected to the a common-electrode connection terminal of the actuator via a second bump; and a second wire having electrical continuity with the second connection electrode portion. The second connecting electrode portion is located in an edge portion of the substrate. The second wire has a conducive-material absent portion that is located between an edge of the substrate and the second connecting electrode portion.
Abstract:
A circuit board includes: an electrode portion which has a copper layer, a copper oxide layer formed thereon, and a removal portion formed by partially removing the copper oxide layer so as to partially expose the copper layer from the copper oxide layer; and a solder bump for flip chip mounting formed on the copper layer exposed by the removal portion.
Abstract:
A printed circuit board and a manufacturing method thereof. The manufacturing method of the printed circuit board includes: coating a first solder resist on an upper surface of a substrate having a circuit pattern formed thereon; removing the first solder resist in the remaining portion except a first specific area by performing primary development after exposing the substrate coated with the first solder resist; coating a second solder resist, which has different properties from the first solder resist, on the upper surface of the substrate having the first solder resist remaining in the first specific area; and removing the second solder resist in the remaining portion except a second specific area by performing secondary development after exposing the substrate coated with the second solder resist.
Abstract:
An electronic device includes an electronic component including a plurality of terminals and a circuit board on which the electronic component is mounted. The circuit board includes a board body, a plurality of electrode pads arranged on the board body, each of the electrode pads being connected to each of the terminals by solder, a first solder resist formed on the board body and having a plurality of first openings, each of the first openings accommodating each of the electrode pads, and a second solder resist formed on the first solder resist and having a plurality of second openings, each of the second openings being larger than each of the first openings and communicating with each of the first openings.
Abstract:
A printed circuit board (PCB) comprising a base board, the base board defines a thermal pad and a plurality of pin pads for solder an integrated circuit (IC) with a Quad Flat No-lead (QFN) package, wherein a plurality of thermal vias are defined on the thermal pad through the base board, a solder mask is defined around each of the thermal vias.
Abstract:
A composite electronic component includes a metal component with a wide surface terminal, a printed circuit board with a wide surface mounting pad; and a plurality of small area solder films partitioned into small sectioned regions. The small sectioned regions are sectioned by grid-shaped solder resist banks on the wide surface mounting pad. A cream solder is applied on the individual small sectioned regions to form the plurality of small area solder films. The grid-shaped solder resist bank has a width configured to: reduce a bubble that occurs in the sectioned region at one side of the grid-shaped solder resist bank from merging with a bubble that occurs in the sectioned region at another side of the grid-shaped solder resist bank; and act as an escaping route for a bubble that occur in the small area solder film.
Abstract:
Disclosed herein are a printed circuit board and a manufacturing method thereof. The manufacturing method of the printed circuit board according to an exemplary embodiment of the present invention includes forming an insulating layer for a circuit pattern protection on a base substrate having a predetermined circuit pattern on at least one surface thereof; removing a part of the insulating layer to form an opened region having a predetermined pattern; applying copper particles onto the insulating layer including the opened region and then irradiating laser on a portion corresponding to the opened region; and fusing the copper particles applied onto the opened region by the laser irradiation to one another to form a copper post on the opened region.
Abstract:
A wiring board on which an electronic component is to be mounted includes a resist having an opening exposing a joint face which is part of the surface of a wiring layer and to which a terminal of the electronic component is to be joined. In the placing step, the electronic component is placed on the wiring board such that the terminal covers the opening entirely and contacts the solder paste applied onto the joint face. Next, the solder paste applied onto the joint face is heated to melt solder and soften thermosetting resin. This allows the solder to gather in a first space within the opening closed with the wiring layer and the electronic component, while allowing the thermosetting resin to gather in a second space formed between a top side of the resist and a lateral side of the electronic component.