Abstract:
A semiconductor module is manufactured by bonding a resin case having a first opening through which surfaces of main circuit terminals and control terminals are exposed, onto a metal heat-dissipating substrate onto which is bonded, a conductive-patterned insulating substrate onto which are bonded, semiconductor chips, the main circuit terminals, and the control terminals; inserting into and attaching to a second opening formed on a side wall constituting a resin case, a resin body having a nut embedded therein to fix the main circuit terminals and the control terminals; and filling the resin case with a resin material. A side wall of the first opening is tapered toward the surface thereof; a tapered contact portion contacting the tapered side wall is disposed on the control terminal; and the resin body having the embedded nut fixes the control terminal having a one-footing structure that is an independent terminal.
Abstract:
In some embodiments, an apparatus includes a first substrate, a second substrate, a first coupler, and a second coupler. The first substrate is formed from a first material and includes an electrical pad. The second substrate is formed from a second material and includes an electrical pad. The first coupler is configured to mechanically couple the first substrate to the second substrate without a soldered connection. The second coupler includes a first end portion, configured to be soldered to the electrical pad of the first substrate, and a second end portion, configured to be soldered to the electrical pad of the second substrate. The second coupler configured to electrically couple the first substrate to the second substrate.
Abstract:
An electrical connector adapted to receive a mating plug utilizes low-profile jack terminal contacts that can flex in their PCB-anchored base portions, which are substantially parallel to the PCB. Any bend in the distal connecting portion or in the intermediate transition portion of each terminal contact is gradual and forms an obtuse angle, thus minimizing stress concentrations. The contacts preferably are arranged in two oppositely facing and interdigitating rows of four contacts each. In one embodiment, the terminal contacts are anchored to the PCB by a contact cradle that constrains the base portion of each terminal contact at two spaced anchoring locations, allowing the base portion to flex therebetween. In another embodiment, the base portions of the terminal contacts are embedded in at least one elastomeric member, which is fitted to the PCB.
Abstract:
An electrical connector for connection with a circuit board having a plurality of through holes and a plurality of SMT contacts. The electrical connector having a plurality of through hole terminals positioned according to the plurality of through holes and arranged in a top-down manner along an upper row and a lower row, and a plurality of SMT terminals positioned sequentially adjacent to each other along a common row in corresponding position to the plurality of SMT contacts on the circuit board.
Abstract:
A light-emitting device having the quality of an image high in homogeneity is provided. A printed wiring board (second substrate) (107) is provided facing a substrate (first substrate) (101) that has a luminous element (102) formed thereon. A PWB side wiring (second group of wirings) (110) on the printed wiring board (107) is electrically connected to element side wirings (first group of wirings) (103, 104) by anisotropic conductive films (105a, 105b). At this point, because a low resistant copper foil is used to form the PWB side wiring (110), a voltage drop of the element side wirings (103, 104) and a delay of a signal can be reduced. Accordingly, the homogeneity of the quality of an image is improved, and the operating speed of a driver circuit portion is enhanced.
Abstract:
When forming a module 100 having a configuration in which a column-shaped connection terminal 11, which forms an interlayer connection conductor, and an electronic component 102 are mounted on a wiring substrate 101 and sealed with a resin, the column-shaped connection terminal 11 which has a substantially T-shaped cross section and in which a first end portion has a larger diameter than a second end portion is prepared (the preparation step), an electronic component 102 is mounted on one main surface of the wiring substrate 101 and the connection terminal 11 is mounted on the one main surface in such a manner that the second end portion of the connection terminal 11 having a smaller diameter is connected to the wiring substrate 101 (the mounting step), and the electronic component 102 and the connection terminal 11 are sealed with a resin layer 103 (the sealing step).
Abstract:
A disk having at least one electric connecting element is described. The disk has a substrate, an electrically conductive structure on a region of the substrate, a connecting element containing at least chromium-containing steel, and a layer of a soldering compound that electrically connects the connecting element to sub-regions of the electrically conductive structure.
Abstract:
A lamp electrode printed circuit board of a backlight unit includes an insulating substrate, first and second conductive patterns on the insulating substrates along a first direction and in parallel, a connecting pattern extending from one of the first and second conductive patterns, a connecting pad at one end of the connecting pattern, auxiliary patterns extending from an edge of the connecting pad, and lamp holders electrically connected to the first and second conductive patterns and spaced apart from each other along the first direction.
Abstract:
An electrical connector assembly is provided with an insulating housing, a PCB, and an FFC. The insulating housing includes a plurality of terminals and two side extensions The FFC and the terminals are electrically connected together by the PCB. A plurality of contacts of the PCB are provided on a top surface of the PCB. A space is defined by the extensions and two rearward inclined members on both sides of the insulating housing respectively with each rearward inclined member joining the insulating housing and the extension. The PCB is disposed in the space.
Abstract:
The invention relates to an electromagnetic actuator comprising a housing (9) having several faces (20, 21) and an electronic control circuit (14) split into at least two parts (14a, 14b) distributed over at least two adjacent faces (20, 21) of the housing (9), each part (14a) of the circuit comprising at least one metallic connector (25a) arranged so as to be connected electrically and mechanically with a metallic connector (25b) of another part of the circuit (14b) so as to form an electrical connection (24).