Abstract:
Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to generate access signals to facilitate memory operations in scaled arrays of memory elements, such as memory implemented in third dimensional memory technology formed BEOL directly on top of a FEOL substrate that includes data access circuitry. In at least some embodiments, a non-volatile memory device can include a cross-point array having resistive memory elements disposed among word lines and subsets of bit lines, and an access signal generator. The access signal generator can be configured to modify a magnitude of a signal to generate a modified magnitude for the signal to access a resistive memory element associated with a word line and a subset of bit lines. The modified magnitude can be a function of the position of the resistive memory element in the cross-point array.
Abstract:
A two-terminal memory cell including a Schottky metal-semiconductor contact as a selection device (SD) allows selection of two-terminal cross-point memory array operating voltages that eliminate “half-select leakage current” problems present when other types of non-ohmic devices are used. The SD structure can comprise a “metal/oxide semiconductor/metal” or a “metal/lightly-doped single layer polycrystalline silicon.” The memory cell can include a two-terminal memory element including at least one conductive oxide layer (e.g., a conductive metal oxide—CMO, such as a perovskite or a conductive binary oxide) and an electronically insulating layer (e.g., yttria-stabilized zirconia—YSZ) in contact with the CMO. The SD can be included in the memory cell and configured electrically in series with the memory element. The memory cell can be positioned in a two-terminal cross-point array between a pair of conductive array lines (e.g., a bit line and a word line) across which voltages for data operations are applied.
Abstract:
Providing a cross point memory array with memory plugs exhibiting a characteristic hysteresis. The memory plugs exhibit a hysteresis that, in the low resistive state, the first write threshold voltage is the point above which any voltages applied across the memory plug have substantially no effect on the resistive state and below which a voltage pulse will alter the resistance of the memory plug. Similarly, in the high resistive state, the second write threshold voltage is the point below which any voltages applied across the memory plug have substantially no effect on the resistive state and above which a voltage pulse will alter the resistance of the memory plug. The read voltages applied to the memory plug are typically above the first write threshold voltage and lower than the second write threshold voltage.
Abstract:
A method for characterizing structures etched in a substrate, such as a wafer is disclosed. A bottom of the structure is embedded in the substrate, the substrate having a top side in which the structures are etched and a bottom side opposite to the top side. The method includes the following steps: illuminating the bottom of at least one structure with an illumination beam issued from a light source emitting light with a wavelength adapted to be transmitted through the substrate, acquiring, with an imaging device positioned on the bottom side of said substrate, at least one image of a bottom of the at least one structure through the substrate, and measuring at least one data, called lateral data, relating to a lateral dimension of the bottom of the at least one HAR structure from the at least one acquired image. A system implementing such a method is also disclosed.
Abstract:
A system for optical inspection of a substrate. The system comprises an illumination device defining an inspection area on the substrate, a support to receive the substrate, and a detection device defining a detection area on the substrate. The inspection area is positioned ahead, with respect to the scanning direction, of at least a portion of the detection area.
Abstract:
A method and related system for measuring a surface of a substrate including at least one structure using low coherence optical interferometry, the method being implemented with a system having an interferometric device, a light source, an imaging sensor, and a processing module, the method including: - acquiring, with the imaging sensor, an interferometric signal formed by the interferometric device between a reference beam and a measurement beam reflected by the surface at a plurality of measurement points in a field of view; the following steps being carried out by the processing module: classifying, by a learning technique, the acquired interferometric signals according to a plurality of classes, each class being associated with a reference interferometric signal representative of a typical structure; and analysing the interferometric signals to derive information on the structure at the measurement points, as a function of the class of each interferometric signal.
Abstract:
A method includes: determining height Z1 of a focus by an optical microscope having autofocus function which uses irradiation light of wavelength λ0 to adjust the focus; determining a wavelength λ1 of irradiation light used for obtaining observation image of second thin film; obtaining observation image of second thin film by using irradiation light of the wavelength λ1, while altering heights of the focus with the Z1 as reference point; calculating standard deviation of reflected-light intensity distribution within the observation image, obtaining height Z2 of the focus corresponding to a peak position where standard deviation is greatest, and calculating a difference ΔZ between Z1 and Z2; correcting the autofocus function with ΔZ as a correction value; and using the corrected autofocus function to adjust the focus, obtaining the observation image of the second thin film, and calculating the film thickness distribution from the reflected-light intensity distribution within the observation image.
Abstract:
A device for dark-field optical inspection of a substrate comprises: a light source for generating an incident beam that is projected onto an inspection zone of the substrate and that is capable of being reflected in the form of diffuse radiation; at least one first and one second collecting device; and a reflecting device for directing at least a portion of the diffuse radiation originating from a focal point of collection coincident with the inspection zone in the direction of the collecting devices, with a first and second reflective zone from which a first portion of the diffuse radiation is directed toward a first focal point, which is optically conjugated with the focal point of collection, and a second portion of the diffuse radiation is reflected toward a second focal point, which is optically conjugated with the collection focal point and distinct from the first focal point of detection.
Abstract:
A method and related system for substrate inspection, includes: creating, based on two light beams originating from one light source, a measurement volume at the intersection between the two light beams, the measurement volume containing interference fringes and being positioned to extend into the substrate, the substrate moving relative to the measurement volume in a direction parallel to a main surface S of the substrate; acquiring a measurement signal representative of the light scattered by the substrate, as a function of the location of the measurement volume on the substrate; calculating at least one expected modulation frequency, of an expected signal representative of the passage of a defect of the substrate through the measurement volume; determining values representative of a frequency content of the measurement signal close to the modulation frequency, to constitute a validated signal representative of the presence of defects; and analyzing the signal to locate and/or identify defects.
Abstract:
A lighting device for an imaging system with an imaging objective lens, including: a sleeve configured to be positioned around the imaging objective lens; at least one optical fibre integral with the sleeve and arranged to guide a light originating from at least one light source; and a directing component configured to orient a light beam emitted by the at least one optical fibre so as to illuminate a field of view of the imaging system along a lighting axis forming an angle with respect to the optical axis of the objective lens larger than the numerical aperture of the imaging system.