Abstract:
A method for etching a workpiece may be provided, which may include: determining a plurality of reference etch profiles for a plurality of positions of an etchant dispenser, each reference etch profile corresponding to a respective position of the plurality of positions of the etchant dispenser; determining a thickness profile of the workpiece; determining a respective etch duration for each position of the plurality of positions of the etchant dispenser based on the determined thickness profile and the plurality of reference etch profiles, to reduce a total thickness variation of the workpiece; and dispensing an etchant over the workpiece via the etchant dispenser for the determined respective etch duration for each position of the plurality of positions.
Abstract:
Method for manufacturing an optical lens in which coating solution curing conditions are satisfied and a coating solution is cured. The coating solution curing conditions include the angle of the axis of an optical lens substrate with respect to the horizontal direction falls within a predetermined angle range, and a second condition that the optical lens substrate rotates around the axis at a predetermined rotational speed. The predetermined angle range is between a maximum inclination angle of the axis at which the peripheral edge of a lens surface is positioned at the highest position of the lens surface, and a maximum inclination angle of the axis at which the peripheral edge of the lens surface is positioned at the lowest position of the lens surface. The predetermined rotational speed is a speed at which the coating solution applied to the lens surface is held in a coating position.
Abstract:
A coating apparatus for coating the balloon portion of a balloon catheter is described. The coating apparatus includes a rotatable member in which the catheter portion of the balloon catheter is mounted and fixed, and which causes rotation of the balloon catheter. The apparatus also includes a support member in which the distal tip of the catheter is inserted and free to rotate; and a spray nozzle directing sprayed material on the balloon surface. The inventive configuration of the coating apparatus allows the balloon catheter to be rotated along its axis with insubstantial or no wobble, which significantly improves the quality of the coating applied to the surface of the balloon.
Abstract:
A system and method for coating an expandable member of a medical device comprising a support structure to support the expandable member and a dispenser positioned with at least one outlet proximate a surface of an expandable member. A drive assembly establishes relative movement between the at least one outlet and the surface of the expandable member to apply fluid on the surface of the expandable member along a coating path. A guide maintains a substantially fixed distance between the at least one outlet and the surface of the expandable member during relative movement therebetween by displacing the expandable member relative to the at least one outlet.
Abstract:
A method of manufacturing a coated low-friction medical device, such as low-friction medical tubing, including applying a coating to one or more selected portions of a surface of low-friction medical tubing to indicate at least one marking formed along the surface of the low-friction medical tubing, and simultaneously or substantially simultaneously: (a) curing the applied coating to a designated temperature (which is above the temperature at which the low-friction medical tubing begins to decompose and shrink) to adhere the applied coating to the surface of the low-friction medical tubing, (b) utilizing one or more anti-shrinking devices to counteract or otherwise inhibit the shrinking of the low-friction medical tubing, and (c) exhausting any harmful byproducts resulting from curing the low-friction medical tubing to a temperate above the temperature at which the low-friction medical tubing begins to decompose.
Abstract:
Provided are methods and systems for distributing coating materials using simultaneous vibration and rotation. Inertial forces generated during vibration and centrifugal forces generated during rotation redistribute the coating materials previously deposited on the surface resulting in uniform and/or conformal layers. The coated surfaces may have various shapes and degrees of roughness and may be referred to as complex surfaces. An initial layer of the coating material may be deposited on a complex surface of the part using dipping, spraying, spin coating, or other like techniques. The coating material is redistributed by simultaneous rotation and vibration of the part using specifically selected process conditions, such as orientation of vibrational and rotational axes relative to the part, rotational speeds, and vibrational frequencies and amplitudes. In some embodiments, the redistribution operation may be repeated one or more times using different process conditions to ensure uniform distribution on different portions of the complex surfaces.
Abstract:
A method for color coding a tool bit includes the following steps: Firstly, a hexagon receptacle is defined in one end of a shaft of a motor. Then, a tool bit to be colored is inserted into the hexagon receptacle of the shaft of the motor in a coaxial manner. A pneumatic device is utilized to have dyestuff injected from a paint reservoir to a brush. The paint reservoir and the brush then move together with respect to the motor to have the brush in contact with a side surface of the tool bit. And, the motor is turned on to rotate the tool bit so as to have the tool bit be annularly colored by the brush. Upon finished coloring, the paint reservoir and the brush together are returned back to their original positions and the motor is turned off. Finally, the colored tool bit can be removed off the shaft of the motor.
Abstract:
A stent with at least one severable supporting device and methods of coating using the same are disclosed. The severable supporting device can be an end tube or a tab attached to some portion of the stent by at least one “gate” or attachment. The end tube or tab may be part of the design of the stent when it is originally manufactured, or it may be attached to the stent in a secondary process by a biocompatible glue or solder. The end tube or tab can be used to support a stent during a coating process eliminating the need for a mandrel which would otherwise contact the stent during the coating process.
Abstract:
A paint for spraying on bamboo products, such as on the exterior surface of a slim tube-shaped bamboo product, is a nonaqueous acrylic-based paint including 10 to 15 percent by weight of one or more flatting powders, 50 to 55 percent by weight of one or more acrylic resins, 1 to 5 percent by weight of one or more leveling agents, 13 to 16 percent by weight of one or more ester solvents, 10 to 15 percent by weight of one or more alcohol solvents, and 8 to 10 percent by weight of one or more ether solvents. After application of the wet paint composition, the solvents evaporate leaving a film of the acrylic resins, flatting powders, and leveling agents.