Abstract:
A system and process for forming a curved glass laminate article is provided. The process and system utilizes co-sagging of a stack of glass sheets of different thicknesses and different glass materials. During co-sagging the thicker glass layer is placed on top of the thinner glass layer. In this process, shape mismatch is avoided by selecting/controlling the glass materials of the sheets of glass such that the viscosity of the lower, thinner sheet during co-sagging is greater than the viscosity of the thicker glass sheet.
Abstract:
An alkali free glass having an average coefficient of thermal expansion at 50 to 350° C. of 30×10−7 to 43×10−7/° C., a strain point of 650 to 725° C., a temperature T4 at which a viscosity reaches 104 dPa·s of 1,290° C. or lower, and a temperature T2 at which the viscosity reaches 102 dPa·s of 1,680° C. or lower, and including, as represented by mol % based on oxides: 62 to 67% of SiO2, 8 to 13% of MgO, 6 to 12% of CaO, 0.5 to 4% of SrO, and 0 to 0.5% of BaO, wherein MgO+CaO+SrO+BaO is 18 to 22%, and MgO/CaO is 0.8 or more, and the alkali free glass has a value expressed by the following Expression (I) of 4.6 or less:
Abstract:
A tubular member for an exhaust gas treatment device according to at least one embodiment of the present invention includes: a tubular main body made of a metal; and an insulating layer formed at least on an inner peripheral surface of the tubular main body. The insulating layer contains glass containing a crystalline substance, and the glass contains silicon, boron, and magnesium.
Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
Abstract:
A luminous nano-glass-ceramics used as white LED source and the preparing method of nano-glass-ceramics are provided. The glass is a kind of non-porous compact SiO2 glass in which luminous nano-microcrystalites are dispersed. The luminous nano-microcrystalite has the chemical formula of YxGd3-xAl5O12:Ce, wherein 0≦x≦3. The stability of the said glass is good and its irradiance is uniform. The preparing method comprises the following steps: dissolving the compound raw materials in the solvent to form mixed solution, dipping the nano-microporous SiO2 glass in the solution, taking it out and air drying, sintering at the temperature of 1100-1300° C. for 1-5 hours by stage heating, and obtaining the product. The method has a simple process, convenient operation and low cost.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
A preparation method of rare earth ions doped alkali metal silicate luminescent glass is provided. The steps involves: step 1, mixing the source compounds of cerium, terbium and alkali metals and putting the mixture into solvent to get a mixed solution; step 2, impregnating the nanometer micropores glass with the mixed solution obtained in step 1; step 3: calcining the impregnated nanometer micropores glass obtained in step 2 in a reducing atmosphere, cooling to room temperature, then obtaining the cerium and terbium co-doped alkali metal silicate luminescent glass. Besides, the rare earth ions doped alkali metal silicate luminescent glass prepared with aforesaid method is also provided. In the prepared luminescent glass, cerium ions can transmit absorbed energy to terbium ions under the excitation of UV light due to the co-doping of cerium ions. As a result, the said luminescent glass has higher luminous intensity than the glass only doped with terbium.
Abstract:
To provide an optical component of quartz glass for use in a projection objective for immersion lithography at an operating wavelength below 250 nm, which component is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should contain hydroxyl groups in the range of from 1 wtppm to 60 wtppm and chemically bound nitrogen, and that the mean hydrogen content of the quartz glass should be in the range of 5×1015 molecules/cm to 1×1017 molecules/cm3.
Abstract translation:为了提供石英玻璃的光学部件,用于在250nm以下的工作波长下用于浸没式光刻的投影物镜,该成分被优化用于线偏振UV激光辐射,特别是关于由各向异性密度变化引起的压实和双折射 根据本发明,建议石英玻璃应含有1〜60重量ppm的羟基和化学键合的氮,石英玻璃的平均氢含量应在5×1015的范围内 分子/ cm至1×1017分子/ cm 3。