Abstract:
Systems which utilize electromagnetic radiation to investigate samples and include at least one spatial filter which has an aperture having an opening therethrough of an arbitrary shape, including methodology for fabracting the aperture on an end of an optical fiber per se.
Abstract:
An optical sensor includes a light receiving device disposed in a housing, an exterior filter rotatably mounted to an attachment surface of the housing, and a light intercepting member which rotates along with a rotation of the exterior filter to adjust an amount of light incident on a light receiving surface of the light receiving device. In this optical sensor, the light intercepting member has a rotary shaft fixed at its center, and has a light adjusting mechanism for adjusting the amount of light incident on the light receiving surface of the light receiving device in a range in a direction of rotation around the rotary shaft. Accordingly, the sensitivity of the optical sensor can be arbitrarily adjusted with a high accuracy.
Abstract:
An optical sensor includes a light receiving device disposed in a housing, an exterior filter rotatably mounted to an attachment surface of the housing, and a light intercepting member which rotates along with a rotation of the exterior filter to adjust an amount of light incident on a light receiving surface of the light receiving device. In this optical sensor, the light intercepting member has a rotary shaft fixed at its center, and has a light adjusting mechanism for adjusting the amount of light incident on the light receiving surface of the light receiving device in a range in a direction of rotation around the rotary shaft. Accordingly, the sensitivity of the optical sensor can be arbitrarily adjusted with a high accuracy.
Abstract:
An optical radiation sensor device includes a radiation collector for receiving radiation from a predefined arc around the collector within the field and redirecting the received radiation along a predefined pathway; motive means to move the radiation collector from a first position in which a first portion of the predefined arc is received by the radiation collector and a second position in which a second portion of the predefined arc is received by the radiation collector; and a sensor element capable of detecting and responding to incident radiation along the pathway when the radiation collector is in the first position and in the second. The use of the optical radiation sensor device in a radiation source module and in a fluid treatment system is also described.
Abstract:
A pixel density detector includes a cylinder (1) having a characteristic of catching incident light, an entrance window (2) provided in a shape of a slit in the longitudinal direction of the cylinder (1), and 2 pieces of light detecting device (4) disposed at a prescribed internal on the cylinder (1) at a prescribed angle against the entrance window (2).
Abstract:
A spot shape detection apparatus for detecting the spot shape of a laser beam oscillated from a laser oscillator includes: a focusing leans for focusing the laser beam oscillated by the oscillator; a rotary body (mirror holder) in which a plurality of mirrors for reflecting the laser beam having passed through the focusing lens are disposed on concentric circles; a drive source (motor) for rotating the rotary body at a predetermined period; a beam splitter for branching return beams of the laser beam reflected by the plurality of mirrors of the rotary body; an imaging unit which is disposed in a direction in which the return beams are branched by the beam splitter and which images spot shapes of the return beams; and a display unit for displaying images obtained by imaging by the imaging unit, in relation with the plurality of mirrors.
Abstract:
A photo-detector device may include a substrate having a bottom surface. The photo-detector device may further include a photocell secured to the bottom surface of the substrate. The photo-detector device may further include a metallic block having a top portion secured to a bottom surface of the substrate to enclose the photocell, wherein an opening is formed within the metallic block that extends from the top portion of the metallic block to a bottom portion of the metallic block to form an aperture for light to travel through the metallic block to the photocell. The photo-detector device may further include a member insertable into the metallic block to vary an open area of the aperture.
Abstract:
The invention in some aspects relates to radiometers and related methods of use. In some aspects of the invention, methods are provided for determining a circumsolar profiles at external locations of interest, e.g., at a solar power generation system installation site.
Abstract:
An optical sensor includes a light receiving portion, a definition portion, and a selection portion. The definition portion defines an incident angle of an incident light that enters the light receiving portion. The selection portion selects a wavelength of the incident light that enters the light receiving portion. The definition portion has a light shielding film disposed above the light receiving portion, and an opening formed in the light shielding film. The selection portion has a slit formed in the light shielding film disposed within a region surrounded by the opening.
Abstract:
An optical sensor for use in a placement detection system includes a pixel line defined by pixels, and an optical imaging means imaging the light of the light source onto a light strip being cross-directional to the detection line of the line-sensor. The optical imaging means is arranged with a distance from the line-sensor, so that the light strip has strip-boundary transitions on each of two edges in the direction of the detection line. The detection line includes a pixel line, in which there are gaps between the adjacent pixels, and the optical imaging means either increases the dimension of the strip-boundary transitions in the direction of the detection line, or creates at least four strip-boundary transitions along the detection line to ensure that at least one of the strip-boundary transitions always falls at least in part onto a pixel.