Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A method for determining spectral characteristics of an object is disclosed. A probe is positioned in proximity relative to the object. The probe provides light from at least first and second light sources positioned first and second distances from a central light receiver. The first light source and the central light receiver define a first critical height from the surface below which no specularly reflected light from the first light source is received by the central light receiver, and the second light source and the central light receiver define a second critical height from the surface below which no specularly reflected light from the second light source is received by the central light receiver. The first critical height is different from the second critical height.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A shutter includes micro-optics having first and second concentrator arrays. A transducer laterally displaces one of the first and second concentrator arrays between transmissive and shuttered modes. In the transmissive mode, the arrays of concentrators are optically aligned to permit electromagnetic energy passing through the first array of concentrators to pass through the second array of concentrators. In the shuttered mode, the electromagnetic radiation is blocked from passing through the second array of concentrators. The concentrators may be compound parabolic concentrators, or lenslets positioned on opposing plates with pinholes printed therethrough. The shutter may increase f-number of radiation passing therethrough, and may be used in a limited f-cone radiation source with shuttering abilities, for example reducing f-cone of radiation output from the radiation source.
Abstract:
A spectroscopy system for high-accuracy, highly automated spectral imaging of a target is provided. Video and spectrometry information are obtained via an integrated video, spectrometry and distance sensing platform and processed by a computer. The processed video and spectrometry information are presented in real-time on an integrated display, with a graphical representation of the actual ground instantaneous field of view of the spectrometer sensor overlaid directly onto the video image of the target to provide real-time target aiming information, thus enabling the operator to rapidly optimize spectral data acquisition.
Abstract:
A multi-angle and multi-channel detecting device for detecting one or more than one samples is provided. The device has a light collector and a multi-channel kernel module. The light collector has a plurality of fiber probes arranged perpendicular to and/or inclined to the sample(s) so as to collect light signals. The kernel module is coupled to the light collector for detecting the sample(s).
Abstract:
A handheld colour measurement device includes a housing in which an optoelectronic measurement unit is located which receives measurement light originating from a measurement object, converts it into corresponding electrical measurement signals and processes these measurement signals into preferably digital measurement data characterizing the colour of the measurement object. It further includes passive components required for the realization of different application functions, such as measurement windows and reference standards, which can be selectively positioned into the measurement beam path of the measurement unit. The passive components are positioned in a first housing block (100) and the opto-electronic measurement unit as a whole in a second housing block (200). The second housing block is adjustable into several defined application positions relative to the first housing block, in which application positions respectively one of the passive components is located in the measurement beam path of the opto-electronic measurement unit. This special division into two mutually relatively adjustable housing blocks allows an easy realization of a compact colour measurement device suitable for many application functions, which is distinguished by a particular user friendliness.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
In a multi-angle colorimeter having an illumination system that illuminates a sample surface and a plurality of light receiving systems that receive reflected light therefrom, an illumination system for orientation error detection is provided that illuminates the sample surface from substantially close direction to the normal of the sample surface. Actual measured reflectance factor is corrected based on the specific approximation function obtained from the measured reflectance factor and detected orientation error.