Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle includes a control unit that is configured to determine that the unmanned vehicle is off-course based on the current position of the unmanned vehicle and the planned path assigned to the unmanned vehicle, generate a delay and a corrected path for the unmanned vehicle, and communicate the delay and the corrected path to the companion unmanned vehicle. The control unit is further configured to control a movement of the unmanned vehicle along the corrected path after the delay.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle can include a satellite navigation unit that is configured to receive a satellite signal indicative of a current position of the unmanned vehicle. The unmanned vehicle can also include an inertial navigation unit that is configured to determine the current position of the unmanned vehicle. The unmanned vehicle can also include a control unit disposed in communication with the satellite navigation unit and the inertial navigation unit. The control unit is configured to determine a planned position of the unmanned vehicle based on the planned path, compare the current position determined by the inertial navigation unit with the planned position based on the planned path, and control the movement of the unmanned vehicle based on at least the comparison between the current position and the planned position.
Abstract:
Described herein a robot assisted method of deploying sensors in a geographic region. The method of deploying sensors is posed as a Markovian decision process. The robot assigns each grid cell in a map of the geographic region a reward value based on a surface elevation of the geographic region and a soil hardness factor. Further, the robot determines an action for each grid cell of the plurality of grid cells, wherein the action corresponds to an expected direction of movement of the robot in the grid cell. The robot computes a global path as a concatenation of actions starting from a first grid cell and terminating at a second grid cell. The method monitors the movement of the robot on the computed global path and computes a second path based on a deviation of the robot from the global path.
Abstract:
The embodiments relate to a distributed marsupial robotic system. The system includes a parent component having a sensor suite to obtain and process environment data via a parent pattern classification algorithm, and one or more child components each having a sensor suite to obtain and process environment data via a child pattern classification algorithm. Each sensor suite includes one or more sensor devices in communication with a processing unit and memory. Each child component is configured to dock to the parent component, and to separate from the parent component in response to a deployment signal. Each child component obtains environment data during separation. The parent component is configured to construct a map of the environment by receiving and integrating the data obtained by each child component.
Abstract:
A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position and a second collection of 3D coordinates of points from a second registration position. In between these positions, the 3D measuring device collects depth-camera images. A processor determines first and second translation values and a first rotation value based on the depth-camera images. The processor identifies a correspondence among registration targets in the first and second collection of 3D coordinates based at least in part on the first and second translation values and the first rotation value. The processor uses this correspondence and the first and second collection of 3D coordinates to determine 3D coordinates of a registered 3D collection of points.
Abstract:
The disclosed subject matter relates to methods and apparatus facilitating assessments of structural and electronic features, parameters, characteristics or any combination thereof using one or more unmanned autonomous vehicles. In some embodiments, an unmanned vehicle may be configured to monitor one or both of the structural and electrical characteristics of an object, and can also include cooperative behavior between two or more unmanned vehicles to test electrical communication in a directional fashion.
Abstract:
A robot includes a three-dimensional shape detecting sensor to detect a three dimensional shape of a travel surface existing in a forward travelling direction of the robot, a posture stabilizer to stabilize a posture of a body of the robot, a feature data generator to generate feature data of the detected three dimensional shape, an inclination angle prediction generator to generate a prediction value of an inclination angle of the body when the robot is to reach a position on the travel surface in the forward travelling direction at a future time point based on the feature data and a prediction model, and an overturn prevention controller to control the posture stabilizer to prevent an overturn of the robot based on the prediction value.
Abstract:
A mobile inspection robot that includes a robot body and a drive system supporting the robot body and configured to maneuver the robot over a work surface. A controller communicates with the drive system and a sensor system. The controller executes a control system that includes a control arbitration system and a behavior system in communication with each other. The behavior system executes an inspection behavior, the inspection behavior influencing execution of commands by the control arbitration system based on sensor signals received from the sensor system to identify and inspect electrical equipment.
Abstract:
Embodiments include a ground scout having an ability to identify the location of rows of crops and the end of the rows so that it can navigate, but in other embodiments, the ground scout can also rely more on an aerial drone to navigate, to act as a communication relay system, and so on. A buddy system including a ground scout and an air scout (e.g. drone) communicate their findings with each other.
Abstract:
A robot system that includes an operator control unit, mission robot, and a repeater. The operator control unit has a display. The robot includes a robot body, a drive system supporting the robot body and configured to maneuver the robot over a work surface, and a controller in communication with the drive system and the operator control unit. The repeater receives a communication signal between the operator control unit and the robot and retransmits the signal.