Abstract:
Systems, methods, and apparatus for reducing EMI in charged particle beam systems are provided. By placing noise sensitive electronic modules used in charged particles systems in a shielded equipment cell, and routing DC only signals to power the modules, EMI within the housing may be significantly reduced.
Abstract:
A plasma processing apparatus having a pair of electrodes which are installed alternately in parallel in a chamber and in which an object to be processed is placed at one electrode thereof, radiofrequency applying device for applying radiofrequency power between the pair of electrodes, cooling device for cooling the object, drying-gas introducing tube for supplying a drying gas into the chamber, and dropwise-condensation preventing member installed at a portion of the chamber so as to be in contact with the outer atmosphere. The apparatus can prevent dropwise condensation at the time of cooling and at the same time prevent the occurrence of radiofrequency leakage.
Abstract:
There is provided a technique that includes: a process chamber in which a substrate is processed; a gas supply system configured to supply a processing gas into the process chamber; a first plasma generator installed to be wound around an outer periphery of the process chamber and configured to generate plasma from the processing gas in the process chamber; and a second plasma generator installed at an upper portion of the process chamber to protrude toward an inside of the process chamber and configured to generate plasma from the processing gas in the process chamber.
Abstract:
RF isolation for power circuitry includes one or more ferrite cages surrounding a pair of coils, one coil connected to power input, and the other coil connected to a load such as a heater. The ferrite cage provides universal isolation for the coils, avoiding the necessity of specially tuned filters or more complicated coil arrangements. A pair of dielectric discs support respective coils. In one aspect, the ferrite cage is constituted by ferrite pieces which fan out from a central portion of the dielectric discs and are connected at an outer periphery of the dielectric discs, and at the central portion of the dielectric discs. In one aspect, the fanned-out ferrite pieces comprises either manganese-zinc or magnesium-zinc ferrites, and the ferrite pieces connecting the fanned-out ferrite pieces comprise nickel-zinc ferrites.
Abstract:
A portable XRF analyzer includes a hand shield and a handle. In one embodiment, the XRF analyzer further comprises a power component spaced-apart from an engine component. The handle and the hand shield extend in parallel between the engine component and the power component, attaching the engine component to the power component. In another embodiment, the XRF analyzer further comprises two housing portions, each integrally formed in a single, monolithic body formed together at the same time. The two housing portions are joined together to form an XRF analyzer housing. In another embodiment, the hand shield is shorter than the handle.
Abstract:
A plasma processing apparatus includes: a detector configured to detect a change in an intensity of light emission from plasma formed inside a processing chamber; and a unit configured to adjust conditions for forming the plasma or processing a wafer arranged inside the processing chamber using an output from the detector, wherein the detector detects a signal of the intensity of light emission at plural time instants before an arbitrary time instant during processing, and wherein the adjusting unit removes the component of a temporal change of a long cycle of the intensity of light emission from this detected signal and detects the component of a short temporal change of the intensity of light emission, and adjusts the conditions for forming the plasma or processing a wafer arranged inside the processing chamber based on the short temporal change of the detected intensity of light emission.
Abstract:
A portable XRF analyzer includes a hand shield and a handle. In one embodiment, the XRF analyzer further comprises a power component spaced-apart from an engine component. The handle and the hand shield extend in parallel between the engine component and the power component, attaching the engine component to the power component. In another embodiment, the XRF analyzer further comprises two housing portions, each integrally formed in a single, monolithic body formed together at the same time. The two housing portions are joined together to form an XRF analyzer housing. In another embodiment, the hand shield is shorter than the handle.
Abstract:
A portable XRF analyzer includes a hand shield to substantially block x-rays from impinging on a hand of a user. The portable XRF analyzer includes a heat sink over an x-ray source and a heat sink over an x-ray detector. The heat sinks are separated from each other by a thermally insulative material.
Abstract:
A plasma processing apparatus includes: a detector configured to detect a change in an intensity of light emission from plasma formed inside a processing chamber; and a unit configured to adjust conditions for forming the plasma or processing a wafer arranged inside the processing chamber using an output from the detector, wherein the detector detects a signal of the intensity of light emission at plural time instants before an arbitrary time instant during processing, and wherein the adjusting unit removes the component of a temporal change of a long cycle of the intensity of light emission from this detected signal and detects the component of a short temporal change of the intensity of light emission, and adjusts the conditions for forming the plasma or processing a wafer arranged inside the processing chamber based on the short temporal change of the detected intensity of light emission.
Abstract:
A particle beam device comprises a beam generator for generating a particle beam having charged particles and an electrode unit having a first electrode and a second electrode, wherein the first electrode interacts with the second electrode, in particular for guiding, shaping, aligning or correcting the particle beam. Moreover, the particle beam device comprises a low-pass filter being connected with at least one of: the first electrode and the second electrode, using an electrical connection. Additionally, the particle beam device comprises a mounting unit having an opening for the passage of the particle beam, wherein the at least one low-pass filter, the first electrode and the second electrode are arranged at the mounting unit. The electrode unit may comprise more than two electrodes, for example up to 16 electrodes.