Abstract:
An ion source for large-area implantation of ions into a specimen comprises an anode, a cathode produced from the same material as that of the specimen towards which ions are emitted from the ion source, or coated with this material, or produced from a material which does not represent a contamination for the specimen, and a closed plasma chamber arranged between the anode and the cathode, the cathode comprises a multi-slot structure with juxtaposed slots which are separated by bars or plates, the ions passing through the multi-slot structure whereby a multi-band beam is produced, and a voltage for generating an electric field at right angles to the ion beam being applicable to the cathode or to subsequent multi-slot structures for extracting and accelerating the multi-band beam, the voltage being applied in such a way that the bars have different polarities.
Abstract:
A method of manufacturing a semiconductor device includes creating ions in a chamber (201), using the ions to generate sputtered material from a target (241, 242) in the chamber (201), creating other ions from the sputtered material in the chamber (201), extracting the other ions out of the chamber (201), and implanting the other ions into the wafer (111).
Abstract:
An arc chamber including a reaction chamber, a filament element used to generate electrons, a first power supply means set for providing power to the filament element, a second power supply means utilized for creating a potential to increase the ionization efficiency, a plurality of gas injected openings set to inject suitable gas into the reaction chamber and be ionized in a gaseous plasma by impact from electrons, a first filament insulator, and three second filament insulators used for isolation. The first filament insulator includes a truncated corn portion and a ring portion. The truncated corn portion has a hole formed threrethrough itself. The ring portion is coaxially connected to the smaller surface of the truncated corn portion. The second filament insulator includes a truncated corn portion and two ring portions. Similarily, the truncated corn portion has a hole through formed therethrough. The ring portions are respectively coaxially connected to the two surfaces of the truncated corn portion. In the preferred embodiment, three first filament insulators and one second filament insulator are set on the filament element for isolation. The filament insulators are screwed into the filament element and exactly attached on the side wall of the reaction chamber.
Abstract:
An ion source is for use in an ion implanter. The ion source comprises a gas confinement chamber having conductive chamber walls that bound a gas ionization zone. The gas confinement chamber includes an exit opening to allow ions to exit the chamber. A base positions the gas confinement chamber relative to structure for forming an ion beam from ions exiting the gas confinement chamber.
Abstract:
Ion implantation equipment is modified so as to provide filament reflectors to a filament inside of an arc chamber, and to remove the electrical insulators for the filament outside of the arc chamber and providing a shield, thereby reducing the formation of a conductive layer on said insulators and greatly extending the lifetime and reducing downtime of the equipment. The efficiency of the equipment is further enhanced by an interchangeable liner for the arc chamber that increases the wall temperature of the arc chamber and thus the electron temperature. The use of tungsten parts inside the arc chamber, obtained either by making the arc chamber itself or portions thereof of tungsten, particularly the front plate having the exit aperture for the ion beam, or by inserting a removable tungsten liner therein, decreases contamination of the ion beam. Serviceability of the arc chamber is improved by using a unitary clamp that separately grips both the filament and filament reflectors. This clamp can also advantageously be made of tungsten.
Abstract:
An ion implantation apparatus is intended to perform the ion implantation for the desired surface of a target irrespective of the surface geometry thereof, and to simplify the structure. The apparatus includes a vacuum chamber, and a plurality of arc ion sources for emitting ion beams on the surface of the target disposed within the vacuum chamber. A plurality of arc ion source mounting openings are formed on the vacuum chamber. One or more of arc ion sources necessary for emitting ion beams on the desired surface of the target are airtightly mounted on the openings opposed to the above surface.
Abstract:
In the discharge chamber (21) of a device for generating plasma, used in the space sector for ion propulsion or for the discharging of satellites and in applications on the ground, suitable ionizing radiation sources (47) are provided, capable of improving the performance of said device. The radiation emitted by the sources creates constant ionization of the gas with advantages both during the preionization phase, i.e. starting of the device, and during the operating phase, standardizing the performance thereof in particular in terms of continuity and regularity of operation.
Abstract:
A sputtering apparatus including two electrodes, a sputtering target disposed on one of the electrodes, and a gas supply for supplying a discharge gas in a vacuum to produce an electric discharge between the two electrodes and whereby particles sputtered from the target due to impact thereon of ions produced by the discharge, are deposited on a substrate. The target disposed on one electrode is formed into an elongated band and the other electrode is disposed so as to enclose the target. The other electrode is also provided with a magnet for producing a magnetic field thereon, and further includes a narrow elongated slot which defines a narrow sputter particle outlet. The narrow sputter particle outlet permits a pressure to exist near the electrical discharge which is higher than the pressure near the substrate. According to a preferred embodiment, the sputtering apparatus has an ion source combined integrally therewith.
Abstract:
The device comprises a cylindrical casing provided with an internal cavity and with a flange and an arc chamber superimposed over the cylindrical casing and including a filament electrically supplied through supply conductors external to said casing and supported by said flange, a repeller plate held at a negative voltage through supply conductors external to said casing and supported by said flange and an inlet for a gas which may be ionized, Inside the arc chamber there is also a support for the metal to be ionized supported and connected electrically to an electrode at a negative voltage by means of a rod passing through the internal cavity of said cylindrical casing.