Abstract:
A cluster type semiconductor processing apparatus and a method for manufacturing a semiconductor device using the same are provided. The cluster type semiconductor processing apparatus includes a polyhedral transfer module to transfer a wafer, a first process module communicating with the transfer module, a degassing process of removing fumes from a surface of the wafer being performed in the first process module, a second process module communicating with the transfer module, a plasma cleaning process of cleaning the surface of the wafer being performed in the second process module, a standby module communicating with the transfer module, the wafer having undergone the degassing process and the plasma cleaning process being maintained in the standby module for a certain time, and a third process module communicating with the transfer module, a metal sputtering process of depositing a metal film on the wafer being performed in the third process module.
Abstract:
Methods and apparatuses for dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating by a laser beam with a centrally peaked spatial power profile to form an ablated trench in the substrate below thin film device layers which is positively sloped. In an embodiment, a femtosecond laser forms a positively sloped ablation profile which facilitates vertically-oriented propagation of microcracks in the substrate at the ablated trench bottom. With minimal lateral runout of microcracks, a subsequent anisotropic plasma etch removes the microcracks for a cleanly singulated chip with good reliability.
Abstract:
Reduction in cooling rate of a substrate having a lower temperature is suppressed because the substrate having a lower temperature is not affected by radiant heat of a substrate having a higher temperature while cooling a plurality of substrates in a cooling chamber. The substrate processing apparatus includes a load lock chamber configured to accommodate stacked substrates; a first transfer mechanism having a first transfer arm provided with a first end effector, and configured to transfer the substrates into/from the load lock chamber at a first side of the load lock chamber; a second transfer mechanism having a second transfer arm provided with a second end effector, and configured to transfer the substrates into/from the load lock chamber at a second side of the load lock chamber; a barrier installed between the substrates to be spaced apart from the substrates supported by a substrate support provided in the load lock chamber; and an auxiliary barrier unit installed between the substrate support and the barrier, wherein the auxiliary barrier unit is installed at places other than standby spaces of the end effectors.
Abstract:
A method of operating a filament assisted chemical vapor deposition (FACVD) system. The method includes depositing a film on a substrate in a reactor of the FACVD system. During the depositing, a DC power is supplied to a heater assembly to thermally decompose a film forming material. The method also includes cleaning the heater assembly, or an interior surface of the reactor, or both. During the cleaning, an alternating current is supplied to the heater assembly to energize a cleaning media into a plasma.
Abstract:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
Abstract:
The invention relates to an apparatus (1) for producing a reflection-reducing layer on a surface (21) of a plastics substrate (20). The apparatus comprises a first sputtering device (3) for applying a base layer (22) to the surface (21) of the plastics substrate (20), a plasma source (4) for plasma-etching the coated substrate surface (21), and a second sputtering device (5) for applying a protective layer (24) to the substrate surface (21). These processing devices (3, 4, 5) are arranged jointly in a vacuum chamber (2), which has inlets (8) for processing gases. In order to move the substrate (20) between the processing devices (3, 4, 5) in the interior of the vacuum chamber (2), a conveying apparatus (10) is provided which is preferably in the form of a rotary table (11).—Furthermore, the invention relates to a method for producing such a reflection-reducing layer on the surface (21) of the plastics substrate (20).
Abstract:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
Abstract:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
Abstract:
In some embodiments, the present disclosure relates to a plasma etching system having direct and localized plasma sources in communication with a processing chamber. The direct plasma is operated to provide a direct plasma to the processing chamber for etching a semiconductor workpiece. The direct plasma has a high potential, formed by applying a large bias voltage to the workpiece. After etching is completed the bias voltage and direct plasma source are turned off. The localized plasma source is then operated to provide a low potential, localized plasma to a position within the processing chamber that is spatially separated from the workpiece. The spatial separation results in formation of a diffused plasma having a zero/low potential that is in contact with the workpiece. The zero/low potential of the diffused plasma allows for reactive ashing to be performed, while mitigating workpiece damage resulting from ion bombardment caused by positive plasma potentials.
Abstract:
In one embodiment, a method for cleaning a showerhead electrode my include sealing a showerhead electrode within a cleaning assembly such that a first cleaning volume is formed on a first side of the showerhead electrode and a second cleaning volume is formed on a second side of the showerhead electrode. An acidic solution can be loaded into the first cleaning volume on the first side of the showerhead electrode. The first cleaning volume on the first side of the showerhead electrode can be pressurized such that at least a portion of the acidic solution flows through one or more of the plurality of gas passages of the showerhead electrode. An amount of purified water can be propelled through the second cleaning volume on the second side of the showerhead electrode, and into contact with the second side of the showerhead electrode.