Abstract:
An electrical testing substrate unit includes a multi-layer ceramic substrate formed of mullite and a borosilicate glass as predominant ceramic components. In the multi-layer ceramic substrate, the borosilicate glass contains an alkali metal oxide in an amount of 0.5 to 1.5 mass %. The multi-layer ceramic substrate has a mean coefficient of linear thermal expansion having a value of 3.0 to 4.0 ppm/° C. between −50° C. and 150° C. A thermal expansion coefficient, α1, of the multi-layer ceramic substrate as determined at a particular temperature and a thermal expansion coefficient, α2, of a to-be-tested silicon wafer as determined at the same temperature silicon satisfy a relation: 0 ppm/° C.
Abstract:
A three-dimensional circuit board is formed by comprising a board, a first wiring-electrode group provided on a plurality of steps above the board, and a second wiring-electrode connected to the first wiring-electrode group at least in an altitude direction, in which at least a connecting portion between the first wiring-electrode group and the second wiring-electrode is integrated in a continuously identical shape.
Abstract:
A method for forming an embedded circuit is disclosed. First, a substrate including a dielectric layer is provided. Second, the dielectric layer is entirely covered by a dummy layer. Then, the dummy layer is patterned and a trench is formed in the dielectric layer at the same time. Later, a seed layer is formed to entirely cover the dummy layer and the trench. Next, the dummy layer is removed and the seed layer covering the dummy layer is removed, too. Afterwards, a metal layer is filled in the trench to form an embedded circuit embedded in the dielectric layer.
Abstract:
Novel methods are provided that results in the formation of single-cap VIPs in a substrate are described herein. As a result, fine pitch trace patterns may be formed on the substrate. The methods may include initially providing a substrate having a first and a second side, the first side being opposite of the second side. A via may then be constructed in the substrate, the via being formed within a via hole that extends from the first side to the second side of the substrate, the formed via having a first end located at the first side of the substrate, and a second end opposite the first end located at the second side of the substrate. A selective deposition may be performed of a conductive material on the second end of the via to form a conductive pad directly on the via on the second side of the substrate without depositing the conductive material onto the first side of the substrate.
Abstract:
Printed circuit boards have circuit layers with one or more via filled holes with copper wraps and methods of manufacturing the same. An embodiment of the present invention provides a method to enhance the consistency of the wraparound plating of through-hole vias of printed circuit boards with (requiring) via filling to provide extra reliability to the printed circuit boards and enables the designers and/or manufacturers of printed circuit boards to design and manufacture boards with relatively fine features and/or tight geometries.
Abstract:
A multi-layer printed circuit board including a core substrate, lower interlayer resin insulating layers formed on the surfaces of the core substrate, respectively, through-hole conductors formed in penetrating holes penetrating through the core substrate and the lower interlayer resin insulating layers, conductor circuits formed on the lower interlayer resin insulating layers, respectively, upper interlayer resin insulating layers formed on the conductor circuits and the lower interlayer resin insulating layers, respectively and via hole conductors formed in the upper interlayer resin insulating layers and positioned on the through-hole conductors, respectively.
Abstract:
A multilayer printed wiring board including a layered capacitor section provided on a first interlayer resin insulation layer and a high dielectric layer and first and second layered electrodes that sandwich the high dielectric layer. A second interlayer resin insulation layer is provided on the first insulation layer and the capacitor section, and a metal thin-film layer is provided over the capacitor section and on the second insulation layer. An outermost interlayer resin insulation layer is provided on the second insulation layer and the metal thin-film layer. A mounting section is provided on the outermost insulation layer and has first and second external terminals to mount a semiconductor element. Multiple via conductors penetrate each insulation layer. The via conductors include first via conductors that electrically connect the first layered electrode to the first external terminals. Second via conductors electrically connect the second layered electrode to the second external terminals.
Abstract:
The present invention provides a wiring, a display device, and a method of manufacturing the same. A first metal diffusion-preventing layer is formed on a substrate or on a circuit element formed on the substrate. Then, a metal wiring layer is selectively formed on the first metal diffusion-preventing layer by an electroless metal plating method or a metal electroplating method. Further, the undesired portion of the first metal diffusion-preventing layer is removed. Finally, a second metal diffusion-preventing layer is formed selectively by an electroless metal plating method in a manner to cover the metal wiring layer or both a seed layer and the metal wiring layer.
Abstract:
A printed circuit board, which increases the contact area between an IC and a printed circuit board, thus increasing the degree of adhesion, is disclosed. The printed circuit board includes: an insulation layer which includes a first circuit pattern, including at least one via land, embedded in the upper surface of the insulation layer to be flush with the upper surface, and a second circuit pattern formed in the lower surface of the insulation layer to be flush with the lower surface; a solder resist layer formed on the insulation layer; a via hole and a bump integrally formed on the second circuit pattern through the via hole and the via land such that it protrudes from the insulation layer to be higher than the solder resist layer.
Abstract:
A multi-layer printed wiring board has a core substrate, a first interlayer insulation layer formed over the core substrate, a first filled via formed in the first interlayer insulation layer, a second interlayer insulation layer formed over the first interlayer insulation layer, and a second filled via formed in the second interlayer insulation layer. The first filled via has a bottom portion having a first diameter. The second filled via has a bottom portion having a second diameter smaller than the first diameter.