Abstract:
A touch window includes a substrate, a sensing electrode on the substrate, a wire electrically connected with the sensing electrode, a ground wire adjacent to the wire, and a printed circuit board connected with the wire and the ground wire. An overlap length between the ground wire and the printed circuit board is longer than an overlap length between the wire and the printed circuit board. Alternatively or simultaneously, a line width of the ground wire is wider than an interval or gap between the wire parallel to the printed circuit.
Abstract:
An assembly is provided of an electro-physical transducer (10) on a flexible foil (20) with a carrier (40). The flexible foil (20) has a first main surface (22) provided with at least a first electrically conductive track (24) connected to the electro-physical transducer and opposite said first main surface a second main surface (23) facing towards the carrier. At least a first incision (25a) extends through the flexible foil alongside said at least a first electrically conductive track, therewith defining a strip shaped portion (27) of the flexible foil that carries a portion of the at least a first electrically conductive track. The at least a first electrically conductive track is electrically connected to an electrical conductor (421) of the carrier, and the flexible foil is attached to the carrier with its strip shaped portion.
Abstract:
Provided is a configuration for a semiconductor layer and a line for reducing the segment length of the semiconductor layer with respect to the bending direction of the flexible substrate. Such a configuration reduces the probability of cracks occurring in the semiconductor layer of the thin-film transistor, thereby improving the stability and durability of the thin-film transistor employed in a curved or a flexible display device. The configuration includes a thin-film transistor (TF) on the flexible substrate. The TFT includes the semiconductor layer extending obliquely with respect to the direction of the line.
Abstract:
An imprinted micro-structure includes a substrate having a first layer in relation thereto. First, second, and third micro-channels are imprinted in the first layer and have first, second, and third micro-wires respectively located therein. A second layer is adjacent to and in contact with the first layer. Imprinted first and second connecting micro-channels including first and second connecting micro-wires are in contact with the first and second micro-wires respectively and are isolated from the third micro-wire. A third layer is adjacent to and in contact with the second layer and has an imprinted bridge micro-channel with a bridge micro-wire contacting the first and second connecting micro-wires and separate from the third micro-wire so that the first and second micro-wires are electrically connected and electrically isolated from the third micro-wire.
Abstract:
Described herein are electronic assemblies including a subassembly film and methods for making the same. In some embodiments, a first subassembly is formed by placing an electronic die at a die placement location on a subassembly film. A second subassembly may be formed by placing the first subassembly at a subassembly placement position on a base layer, such that electrical contacts/traces on the first film overlap with electrical contacts/traces at a subassembly connection point on the base layer. Placement of the die on the subassembly film may be performed with automatic placement machinery that has a placement accuracy that is greater than that required to place the first subassembly on the base layer. As a result, the costly and time consuming manual inspection of die placement may be avoided.
Abstract:
An assembly of a plurality of tiles (1) with a carrier (40). The tiles (1) comprise a foil (20) with an electro-physical transducer (10) and electrical connectors (24, 28) to said transducer. The tiles are mechanically and electrically coupled to the carrier in a connection portion (1c) of said tiles.
Abstract:
A method for laying out a circuit board includes following steps. A substrate board is formed with a plurality of board sides. A ground plane, including a plurality of tiles, is provided. Each ground trace tile is defined by a plurality of ground traces. A signal plane on the substrate board has a plurality of signal traces that comprise of a plurality of straight line segments. Any one ground trace of each tile is arranged at an angle other than zero degrees relative to one determined board side. The straight line segments is applied to be mapped on the ground plane crossing one ground trace of one tile within an angle range determined by the ground traces of the tile and an adjacent diagonal line of the tile. The one ground trace and the straight line segments are applied at an angle movable in a range from 22.5° to 32.5°.
Abstract:
A printed circuit board includes a group of pads suitable to be soldered to a respective group of solder-balls of a device. Each pad of the group has a crack initiation point on its perimeter at a location where cracks in a solder-ball are anticipated to start after that solder-ball is soldered to that pad. For a pad of that group having a microvia located therein, a center of that microvia is located farther than a center of that pad from its crack initiation point. For a pad of that group having a trace merging along a portion of its perimeter, that portion does not include a vicinity of that crack initiation point.
Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
A printed circuit board includes a base formed from a plurality of woven fibers, and signal traces laid on the base. Each of the signal traces includes at least a straight line segment. The signal traces are laid on the base in such a manner that the line segments of the signal traces mapped on the base cross the fibers at angles not equal to zero degrees.