Abstract:
A Z-directed connector component for insertion into a printed circuit board and providing electrical connections to internal conductive planes contained with the PCB and/or to external conductive traces on the surface of the PCB.. In one embodiment the Z-directed component is housed within the thickness of the PCB allowing other components to be mounted over it. The body of the Z-directed connector component may contain one or more conductors and may include one or more surface channels or wells extending along at least a portion of the length of the body. Methods for mounting Z-directed components are also provided.
Abstract:
A Z-directed capacitor component for insertion into a printed circuit board while allowing electrical connection to internal conductive planes contained within the PCB. In one embodiment the Z-directed capacitor component utilizes semi-cylindrical metallic sheets. In another embodiment, stack annular metallic disks are used. The Z-directed capacitor component mounts within the thickness of the PCB allowing other components to be mounted over it. The body may contain one or more conductors and may include one or more surface channels or wells extending along at least a portion of the length of the body. Methods for mounting Z-directed components are also provided.
Abstract:
A via design apparatus for designing a via providing connections between a plurality of layers inside a multilayer board includes: a determination section that determines a value of a shape parameter indicating a shape of a via in the multilayer board, the via having a hole passing through the plurality of layers and a conductive section on a side wall of the hole; and a calculation section that calculates a value of impedance of the via according to the value of the shape parameter.
Abstract:
A system for directly connecting multiple printed circuit boards (PCB) circuits without the need for peripheral connectors. Multiple PCBs are electrically and mechanically interfaced with one or more plated holes or tabs on at least one first PCB and one or more plated tabs or holes on at least one second PCB. The plated tab(s)/hole(s) from said second PCB mate with the corresponding plated tab(s)/hole(s) from said first PCB to form a mechanical and electrical interconnect.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
A configurable printed circuit board can be used with a bussed electrical center in a vehicle and has a dielectric body. The dielectric body defines an array of plated through-holes that are constructed to receive a terminal of an electrical adaptor. A conductive trace is also adhered to a surface of the dielectric body and is routed through some of the plated through-holes for carrying current between them. An aperture is defined through a portion of some of the plated through-holes and the respective conductive traces to electrically isolate one side of the conductive trace from another side; and thus the printed circuit board can accommodate more than one electrical device in a single section.
Abstract:
An object of the present invention is to prevent occurrence of an electrical fault such as signal disconnection due to exfoliation between a via and a printed circuit board, via crack, or the like, caused by various stresses that may arise when the printed circuit board is curved. The printed circuit board includes a first wiring layer 11, an electrical insulating base material 12 formed on the first wiring layer 11 and including a via base hole 12a that leads to the first wiring layer 11, and a second wiring layer 16 that is formed on the electrical insulating base material 12 and is electrically connected to the first wiring layer 11 through the via base hole 12a. In a region of the second wiring layer 16 disposed at least in the vicinity of the via base hole 12a, a stress relieving portion 17 is formed which relieves bending stress, tensile stress, compressive stress, and shear stress that may arise when the electrical insulating base material 12 is curved.
Abstract:
A shielded through-via that reduces the effect of parasitic capacitance between the through-via and surrounding wafer while providing high isolation from neighboring signals. A shield electrode is formed in the insulating region and spaced apart from the through-via. A coupling element couples at least the time-varying portion of the signal carried on the through-via to the shield electrode. This reduces the effect of any parasitic capacitance between the through-via and the shield electrode, hence the surrounding wafer.
Abstract:
A pedestal connector that incorporates one or more grouped element channel link transmission lines is seen to have a dielectric body and two opposing contact ends that are intended to contact opposing contacts or traces. The dielectric body has an S-shaped configuration such that the transmission lines supported thereon make at least one change in direction, thereby permitting the use of such connector to interconnect elements lying in two different planes. The transmission lines include slots that extend within the frame and which define opposing, conductive surfaces formed on the dielectric body which are separated by an intervening air gap.
Abstract:
A first wiring pattern formed on a first layer of a multilayer wiring substrate, a second wiring pattern formed on a layer different from the first layer on which the first wiring pattern is formed, a penetration hole penetrating the front surface and the back surface of the substrate, and a penetration hole penetrating a front surface and a back surface of the substrate; and a fitting connector having a conductor part on a side surface inscribed in the penetration hole and fitting into the penetration hole are provided. The first wiring pattern and the second wiring pattern are exposed from the internal surface of the penetration hole, and the fitting connector connects a first end part of the conductor part and a second end part with an exposed part of the first wiring pattern and an exposed part of the second wiring pattern, respectively.