Abstract:
A power distribution system element formed via an additive manufacturing technique, such as applying a conductive material to a memory metal substrate, are discussed herein. In operation (e.g. in response to delivering current through the distribution system), the memory metal contracts while the conductive material expands. The result is distribution system element having reduced thermal expansion, which can be net zero coefficient of thermal expansion.
Abstract:
A power chain consisting of a chain comprising links that are electrically conductive elements mounted on a circuit board in at least two layers and in such a way that the elements included in the power chain are assembled shifted and overlapping and in electrical contact with each other.
Abstract:
To achieve efficient heat spreading and heat releasing by using a metal core of a circuit board, a terminal block includes an insulating block body and terminals. At least one of the terminals is provided with terminal portions for a connection with a circuit board. The terminal portions are inserted into respective through holes of the circuit board, the circuit board having a pattern circuit at a surface layer thereof and a conductive metal core at an intermediate portion in a thickness direction, so that heat of the metal core or of both the metal core and the pattern circuit is absorbed and transferred to the terminals. A bus-bar block includes an insulating block body and several parallel bus-bars with different lengths. Terminal portions at a tip end of the bus-bars are inserted, near heat-generating component on the circuit board, into the through holes of the circuit board.
Abstract:
The electrical card has power modules constituted by power components and by control components that are carried by strips fastened on a support plate comprising an electrical ground plate. The power components are connected firstly to control buses, and secondly to power buses carried by the support plate and extending in a layer adjacent to the electrical ground plate.
Abstract:
A printed board includes a printed board body having a first side, a second side opposing the first side, and a through-hole; a printed conductor disposed on the first side of the printed board body; and a bus bar disposed on the second side of the printed board body, the bus bar including a terminal that extends through the through-hole. The terminal includes a plurality of branched terminal portions at a position corresponding to an interior of the through-hole, and at least one of the branched terminal portions is bent and attached to the printed conductor.
Abstract:
A clamp for a choke is provided, the clamp comprising a component configured to hold a choke and at least one electrical connector receiving element for receiving one or more electrical connectors of a choke. The clamp is fitted to the choke and then the assembly is fitted into a device, such as a chassis.
Abstract:
A printed board includes a printed board body having a first side, a second side opposing the first side, and a through-hole; a printed conductor disposed on the first side of the printed board body; and a bus bar disposed on the second side of the printed board body, the bus bar including a terminal that extends through the through-hole. The terminal includes a plurality of branched terminal portions at a position corresponding to an interior of the through-hole, and at least one of the branched terminal portions is bent and attached to the printed conductor.
Abstract:
The electrical card has power modules constituted by power components and by control components that are carried by strips fastened on a support plate comprising an electrical ground plate. The power components are connected firstly to control buses, and secondly to power buses carried by the support plate and extending in a layer adjacent to the electrical ground plate.
Abstract:
An electrical power distribution unit (1) for an electrical system has a printed circuit board (200) with a punched grid (100) arranged thereon. An electrical component (300, 310) is arranged on the printed circuit board on a side of the punched grid (100). An electrical contact (350) of the electrical component projects through a passage opening in the printed circuit board. The punched grid is arranged between the electrical component and the printed circuit board, and an opening is formed in the punched grid in an area (130) around the electrical contact. The punched grid has a current infeed (110) which comprises a plurality of tongues (111, 112; 113). At least one of the tongues is bendable out of a plane of the punched grid in such a way that two of the tongues form a mutually adjacent common portion (115), which is electrically contactable by an electrical plug connector.
Abstract:
An electrical distribution system provides a Line Replaceable Modules (LRM) with a printed wire board (PWB) which is of a relatively thick construction. The PWB is manufactured of a relatively thick construction to provide structural support for a multitude of electrical components as well as a board mounted contactor. Each contactor is mounted directly to the PWB. As the primary contactor switch function is board mounted, support functions such as coil drivers, economizing switches, auxiliary switches become PWB mounted components that are assembled to the PWB for communication through the board circuit traces rather than the heretofore required wiring harnesses.