Abstract:
Provided are a semiconductor package having connection terminals whose side surfaces are exposed and a semiconductor module including such a semiconductor package. Also provided are methods of fabricating the semiconductor package and semiconductor module. According to an embodiment of the present invention, a semiconductor package includes a semiconductor chip including a semiconductor wafer having first and second opposite surfaces and a plurality of conductive pads arranged in a row on the first surface along the edges of the semiconductor wafer such that a side surface of each conductive pad is exposed. An insulating layer is formed on the first surface of the semiconductor wafer and includes openings for exposing parts of the conductive pads. A plurality of connection terminals are respectively arranged on the conductive pads exposed through the openings and a reinforcing member is arranged on the insulating layer to cover a portion of each connection terminal.
Abstract:
A printed circuit board (PCB) includes a substrate, a plurality of copper foils formed on at least one surface of the substrate, a plurality of through holes extending through the substrate arranged in a rectangular array, and a plurality of blocking wall. Inner walls of the plurality of through holes are coated with the plurality of copper foils. The plurality of blocking walls project from the plurality of copper foils and surround the plurality of through holes to prevent solder from overflowing into the plurality of through holes when the PCB goes through a wave soldering procedure.
Abstract:
A semiconductor device assembly includes a substrate and a semiconductor die adjacent to a first surface of the substrate. The substrate also includes a second surface opposite from the first surface, an opening extending from the first surface and the second surface, contact pads on the second surface, and substrate pads on the second surface, adjacent to the opening. Bond pads of the semiconductor die are aligned with the opening through the substrate. Intermediate conductive elements, such as bond wires, extend from bond pads of the semiconductor die, through the opening, to substrate pads on the opposite, second surface of the substrate. An encapsulant, which fills the opening and covers the intermediate conductive elements, protrudes beyond a plane in which the second surface of the substrate is located. Discrete conductive elements, such as solder balls, may protrude from the contact pads of the substrate.
Abstract:
A suspension board with circuit includes a conductive pattern, including a slider arranged on a surface side of the suspension board with circuit and mounted with a magnetic head, the magnetic head being electrically connected with the conductive pattern; and a light emitting device arranged on the back surface side of the suspension board with circuit and electrically connected with the conductive pattern, in which the conductive pattern includes a first terminal provided on a surface of the suspension board with circuit and electrically connected with the magnetic head; and a second terminal provided on the back surface of the suspension board with circuit and electrically connected with the light emitting device.
Abstract:
An electronic device and manufacturing thereof. One embodiment provides a carrier and multiple contact elements. The carrier defines a first plane. A power semiconductor chip is attached to the carrier. A body is formed of an electrically insulating material covering the power semiconductor chip. The body defines a second plane parallel to the first plane and side faces extends from the first plane to the second plane. At least one of the multiple contact elements has a cross section in a direction orthogonal to the first plane that is longer than 60% of the distance between the first plane and the second plane.
Abstract:
The present invention discloses an integrated circuit module and method of manufacturing the same. The integrated circuit module includes a chip and a carrier supporting the chip. The carrier defines a front side and a back side, and the chip is disposed on the front side. The carrier includes a first insulating layer defining a first opening at the back side, a second insulating layer defining a second opening and a chip accommodation opening at the front side, and a patterned conductive layer sandwiched in between the first insulating layer and the second insulating layer. The patterned conductive layer is formed with an inner contacting portion exposed through the chip accommodation opening and an outer contacting portion exposed through the first opening and the second opening. The inner contacting portion is connected to the chip through the chip accommodation opening. The outer contacting portion is provided for electronically connecting an electronic device to the patterned conductive layer selectively at the front side through the second opening and at the back side through the first opening.
Abstract:
A sensor module having a package substrate, a sensor disposed within and electrically connected to the package substrate, an amplifier disposed within and electrically connected to the package substrate, and electrical traces within the package substrate for routing sensor signals from the sensor to the amplifier, and then from the amplifier to external electrical connectors on the package substrate.
Abstract:
A wireless IC device includes a wireless IC chip; a feeder circuit board which has the wireless IC chip located thereon, is magnetically coupled to a radiation plate, supplies electric power to the wireless IC chip, and relays signals between the wireless IC chip and the radiation plate; and a substrate on which the feeder circuit board is placed. On the substrate, there are formed a plurality of positioning markers indicating the boundaries of a plurality of positioning areas in which the feeder circuit board is selectively placed.
Abstract:
A recess (5a) in the corner direction and recesses (5b) in side directions are formed in each connecting pad (5A) located at a corner of a lower surface-side of an insulating base 2 having groove-shaped recesses (6) in the periphery, and groove-shaped recesses (6a and 6b) in the corner and side directions are formed in each corner portion (2A) of the insulating base 2 corresponding to the connecting pad (5A). Connecting pads (5) of an electronic apparatus in which an electronic component is mounted on the insulating base 2 are mounted on an external electrical circuit board by using a solder. A solder (31) melted during the solder-mounting adheres onto the groove-shaped recesses (6a and 6b) in the corner and side directions of the corner portion (2A) of the insulating base 2 and thus solder fillets are formed in the groove-shaped recesses (6a and 6b). Thus, solder bonding strength in the corners where external force is likely to work can be increased and the connecting pads of the wiring board can be firmly bonded to the lead conductors of the external electrical circuit board by using a hard and brittle lead-free solder.
Abstract:
An electronic device with enhanced heat spread. A printed circuit board is disposed in a casing and includes a first metal ground layer, a second metal ground layer, and a metal connecting portion. The first metal ground layer is opposite the second metal ground layer. The metal connecting portion is connected between the first and second metal ground layers. The second metal ground layer is connected to the casing. A chip is electrically connected to the printed circuit board and includes a die and a heat-conducting portion connected to the die and soldered with the first metal ground layer. Heat generated by the chip is conducted to the casing through the heat-conducting portion, first metal ground layer, metal connecting portion, and second metal ground layer.