Abstract:
Disclosed is a spectrometer apparatus using a continuous wave laser and a photomultiplier tube. The spectrometer apparatus includes a continuous wave laser irradiating part to irradiate a continuous wave laser to introduced particles, a scattering light measuring part to measure a scattering light emitted from the particles due to the continuous wave laser, a triggering signal generator to generate a triggering signal if a measurement value of the scattering light measuring part is greater than a preset value or equal to the preset value, a pulse laser irradiating part to receive the triggering signal to irradiate a pulse laser to the particles, and a spectral analysis part to measure an emission light generated from the particles due to the pulse wave laser to analyze elements consisting of the particles.
Abstract:
A pulse train comprising chirped pulses of electromagnetic energy can be used to excite a sample, such as for spectroscopic analysis. The respective chirped pulses can include a frequency sweep across a first specified bandwidth during a respective chirped pulse duration, the respective chirped pulse duration establishing a first frequency-domain comb peak separation. A width of a frequency-domain comb peak can be established at least in part by a total duration of the pulse train, and a bandwidth of the first frequency-domain comb can be determined at least in part by the first specified bandwidth of the frequency sweep of the respective chirped pulses.
Abstract:
Technologies are generally described for systems and methods for detecting chiral properties of materials and separating materials based on their chiral properties. A chiral vector is constructed from anisotropy properties of a polarization-dependent output signal from a sample. Different types of molecules from the sample can be differentiated based on a magnitude of the chiral vector. Chiral properties of the sample can be detected based on an angle of the chiral vector. The output signal can be a fluorescent emission from the sample and can be used to detect chiral properties of a substantially opaque sample.
Abstract:
Apparatus, systems, and methods may operate to receive incident energy within a chamber defining a first part of an interaction volume that attenuates the incident energy as a function of path length to provide attenuated energy. Additional activity may include simultaneously transforming the attenuated energy characterized by a substantially exponential intensity function into resultant energy characterized by a substantially polynomial intensity function. The transformation may be accomplished using an interacted energy transformation element that defines a second part of the interaction volume, the transformation element operating to intercept the attenuated energy along a plurality of path lengths. Other activity may include transmitting the resultant energy to a receiver. Additional apparatus, systems, and methods are disclosed.
Abstract:
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Abstract:
An analysis apparatus includes a plasma generation unit and an optical analysis unit. The plasma generation unit generates initial plasma by momentarily energizing a target substance to be turned into a plasma state, and maintains the target substance in the plasma state by irradiating the initial plasma with an electromagnetic wave for a predetermined period of time. The optical analysis unit identifies the target substance based on information with respect to emission intensity during a period from when the emission intensity reaches a peak due to the initial plasma until when the emission intensity increases and reaches approximately a constant value due to electromagnetic wave plasma maintained by the electromagnetic wave, or information with respect to emission intensity after the electromagnetic wave irradiation is terminated.
Abstract:
The analysis apparatus 10 includes a plasma generation device 11 and an optical analysis device 13. The plasma generation device 11 generates initial plasma by energizing a substance in space to be turned into a plasma state, and maintains the plasma state by irradiating the initial plasma with electromagnetic wave for a predetermined period of time. Then, the optical analysis device 13 analyzes the target substance 15 based on a time integral value of intensity of emission from the target substance 15 in an electromagnetic wave plasma region, which is maintained by the electromagnetic wave.
Abstract:
An optoacoustic system includes first and second light sources capable of generating pulse of light at first and second wavelengths, first and second electrically controlled optical attenuators, first and second light sync detectors, and a combiner. A power meter that is calibrated to determine power at the first and second predominant wavelength measures power at the first wavelength after the first light sync is detected and measures power at the second wavelength after the second light sync is detected. The system includes a calibration mode wherein it electrically attenuates the first optical attenuator when the power measured by the power meter at the first wavelength after the first light sync is detected is above a first level, and electrically attenuated the second optical attenuator when the power measured by the power meter at the second wavelength after the second light sync is detected is above a second level.
Abstract:
A plasma generating unit for a process monitoring device includes a hollow first electrode extending in a length direction and a second electrode extending in the length direction and positioned within and displaced from the first electrode with a distance therebetween. The first electrode has an inner diameter and the second electrode has an outer diameter selected to vary the distance between the electrodes in the length direction so that the plasma generating unit generates a plasma by ionizing a gas flowing between the electrodes at a different position in the length direction based on a pressure of the gas.
Abstract:
Systems and methods for flattening the image across the entire field by correcting the image for both the fluorescence and scatter spatial variations. Images of a stable fluorescence target and a scattering target are separately acquired in an imaging system. From these target images, a pixel remapping function, e.g., including two correcting pixel slopes, is calculated for subsequent image pixel remapping. An image of a sample under investigation is then acquired by the imaging system and the sample image is remapped based on the pixel remapping function for the imaging system to form a corrected (field flattened) image. Which correction pixel slope to be used is determined based on whether a sample image pixel value is higher or lower than a threshold value.