Abstract:
Porous, extruded titania-based materials further comprising one or more quaternary ammonium compounds and/or prepared using one or more quaternary ammonium compounds, Fischer-Tropsch catalysts comprising them, uses of the foregoing, processes for making and using the same and products obtained from such processes.
Abstract:
A membrane includes a first layer, and a second layer coupled to the first layer. The second layer includes a network of catalytic sites, each catalytic site having a catalytic center characterized by promoting a chemical reaction of a target material. A method of forming a chemically reactive membrane includes applying a first solution to a structure, the first solution includes a macrocyclic ligand having electron-donating ligands and a side functional group for crosslinking, crosslinking a plurality of the macrocyclic ligand to form a first network of crosslinked macrocyclic ligands, and applying a second solution to the structure, the second solution comprising a catalytic center. Each catalytic center complexes with the electron-donating ligands of each macrocyclic ligand to form catalytic sites in the first network of crosslinked macrocyclic ligands.
Abstract:
Provided herein are methods for making a freeze-cast material having a internal structure, the methods comprising steps of: determining the internal structure of the material, the internal structure having a plurality of pores, wherein: each of the plurality of pores has directionality; and the step of determining comprises: selecting a temperature gradient and a freezing front velocity to obtain the determined internal structure based on the selected temperature gradient and the selected freezing front velocity; directionally freezing a liquid formulation to form a frozen solid, the step of directionally freezing comprising: controlling the temperature gradient and the freezing front velocity to match the selected temperature gradient and the selected freezing front velocity during directionally freezing; wherein the liquid formulation comprises at least one solvent and at least one dispersed species; and subliming the at least one solvent out of the frozen solid to form the material.
Abstract:
Porous, extruded titania-based materials further comprising mesopores and macropores and/or prepared using one or more porogens, Fischer-tropsch catalysts comprising them, uses of the foregoing, processes for making and using the same and products obtained from such processes.
Abstract:
An ethylene epoxidation catalyst is disclosed that comprises a fluoride-mineralized carrier having silver and a rhenium promoter deposited thereon, wherein the fluoride-mineralized carrier has: a total fluorine (TF) content less than 5000 ppm as measured by XRF, a water extractable fluorine (WEF) content greater than 45 ppm as measured by microwave extraction and ion specific electrode, and wherein the ratio of TF:WEF is between 10 and 110. Associated methods of manufacturing such catalysts and epoxidation methods using such catalysts are similarly provided.
Abstract:
An exhaust gas purification catalyst includes: a first catalyst unit that consists of a hydrogen generating catalyst including a noble metal and an oxide that contains lanthanum, zirconium and an additional element such as neodymium; a second catalyst unit that consists of an oxygen storage/release material and a perovskite oxide disposed in contact with the oxygen storage/release material and represented by the general formula LaxM11-xM2O3-δ, where La is lanthanum, M1 is at least one element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M2 is at least one element selected from the group consisting of iron (Fe), cobalt (Co) and manganese (Mn), x satisfies 0
Abstract:
The invention relates to a supported catalyst that comprises an oxide substrate that is for the most part calcined aluminum and an active phase that comprises nickel, with the nickel content being between 5 and 65% by weight of said element in relation to the total mass of the catalyst, with said active phase not comprising a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, said catalyst having a median mesopore diameter of between 8 nm and 25 nm, a median macropore diameter of greater than 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.30 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.34 mL/g. The invention also relates to the method for preparation of said catalyst and its use in a hydrogenation method.
Abstract:
A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.
Abstract:
A zinc-based nanohybrid was prepared using a facile wet chemistry process. This nanohybrid has zinc oxide nanostructures connected to zinc phthalocyanine molecules via biologically important ligands. In addition, this nanohybrid has photocatalytic properties and photodegrades water pollutants, such as methyl orange.
Abstract:
A silver-based ethylene epoxidation catalyst is provided that exhibits improved performance, i.e., selectivity and activity decline. The catalyst that exhibits the improved performance includes greater than about 20% by weight of silver disposed on an alpha-alumina carrier, and a promoting amount of one or more promoters disposed on the alpha-alumina carrier. The silver is present on the alpha-alumina carrier as silver particles having a diameter of greater than about 150 nm and a distribution density of about 20 particles per 1 square micron or less.