Abstract:
In a sliding bearing in which a bearing metal layer is covered with a coating layer, the coating layer comprises a thermosetting resin as a base resin and soft metal particles dispersed in the base resin in an amount of 0.1 to 10% by volume based on the volume of the coating layer. The soft metal is harder than the base resin and has a higher thermal conductivity than the base resin, so that the wear resistance and anti-seizure property of the sliding bearing are improved. In particular, when the soft metal particles are of copper, silver, tin, zinc or the like, the soft metal particles react with the sulfur contained in a lubricating oil to form a thin metal sulfide film excellent in lubricity on the surface of the particles, whereby the coefficient of friction is made smaller.
Abstract:
There is provided a method for coating a metal substrate by the use of a polyvinylidene fluoride resin composition. The method comprises forming a coating film made of a melted resin composition on the surface of an undercoated metal substrate at a temperature of from 200.degree. to 350.degree. C., said resin composition containing a major amount of polyvinylidene fluoride and from 5 to 40% by weight of an inorganic filler based on the total weight of the resin composition; and precooling said coating film to a temperature T.sub.A and then keeping said coating film at the temperature T.sub.A for at least one minute, wherein said temperature T.sub.A (.degree.C.) satisfies the inequality:T.sub.C -10.degree.C..ltoreq.T.sub.A .ltoreq.T.sub.C +10.degree.C.,said T.sub.C (.degree.C.) being the crystallization temperature for the polyvinylidene fluoride.
Abstract:
The invention relates to a zinc dust primer system which renders possible a mass production working of metal sheets by noncutting processes. The said primer system consists of a lower or bottom layer containing the actual zinc dust primer, and a covering layer containing a substance promoting sliding and a binder. A suitable substance promoting sliding is, in particular, graphite. The system of the invention is especially applicable in the automobile, shipbuilding and packing industries and in the construction of steel furniture. It is of special interest in the case of the coil-coating process.
Abstract:
The present disclosure provides a decorative coating film, which ensures and/or maintains millimeter wave transmission properties even though the decorative coating film is continuously used. The present disclosure relates to a decorative coating film formed on the surface of a resin substrate positioned in the pathway of a radar device, wherein the decorative coating film at least comprises: fine silver particles or fine silver alloy particles, nickel oxide, and a binding resin having light transmission properties, which binds the fine silver particles or the fine silver alloy particles dispersed in the decorative coating film with one another, wherein the shape of the nickel oxide is a wire shape.
Abstract:
Provided herein is a device for forming a conductive film. The device includes a deposition device and an air supply. The deposition device is configured to form a wet film having conductive nanostructures and a fluid carrier on a web. The web is moved in a first direction while forming the wet film. The air supply is disposed at a side of the web and configured to apply an air flow onto the wet film. The air flow is directed onto the wet film in a second direction perpendicular to the first direction to reorient a direction of some conductive nanostructures in the wet film to define reoriented conductive nanostructures.
Abstract:
According to an aspect of the present invention, medical devices are provided whose surfaces are partially covered with a coating that further comprises silver nanoparticles. Other aspects of the invention pertain to methods of making and using such medical devices.
Abstract:
A multi-layer film for use in forming a layer of hardfacing on a surface of a tool includes a first layer and a second layer covering at least a portion of a surface of the first layer. The layers each include a polymer material and a plurality of particles dispersed throughout the polymer material. An intermediate structure includes a body of an earth-boring tool, a first material layer disposed over a surface of the body, and a second material layer disposed over the first material layer. A method of applying hardfacing includes providing a first material layer on a surface of a body of an earth-boring tool, providing a second material layer adjacent the first material layer, heating the body and removing the polymer material from the body of the earth-boring tool, and heating the body of the earth-boring tool to a higher temperature to form a layer of hardfacing material.
Abstract:
The present invention is a method for manufacturing a coated material containing a string-shaped filler using a coating device which applies a coating fluid by forming a coating fluid bead in a clearance between a running web wound on a backup roller and a coating head tip, comprising at least an applying step of applying to the web the coating fluid containing a large number of metal nanowires and a drying step of drying a coating layer that has been applied, wherein the clearance is set so as to satisfy h
Abstract:
A protective coating is applied to a bell body composed of bronze by simply dip-coating the bell with an outer layer of zinc. The process is carried out by immersing the bell body in a hot aqueous solution containing sodium hydroxide and powdered free zinc. After the bell is removed from the coating solution it is rinsed and then polished. The coating protects the bell from environmental contaminants without changing the frequency or musical quality of the bell and therefore may be used equally with newly manufactured or refurbished bells.
Abstract:
Provided are surfaces comprising particles, which particles may possess, for example, antimicrobial or biosensing properties. Also provided are related methods for fabrication of the inventive articles. Also provided are systems and methods for treating fluids, objects, and targets with the inventive surfaces.