Abstract:
The invention relates to a process for the preparation of a composite material, said composite material comprising a substrate and a layer on the substrate, comprising a vapour-depositing step in which a compound comprising a triazine compound is deposited on the substrate at a pressure below 1000 Pa, whereby the layer is formed, wherein during the vapour-depositing step the temperature of the substrate lies between −15 ° C. and +125 ° C. The invention further relates to a composite material, obtainable by the process as disclosed.
Abstract:
A method for forming an electronic device in a multilayer structure comprising the steps of: defining a topographic profile in a laterally extending first layer; depositing at least one non-planarizing layer on top of the first layer such that the topographic profile of the surface of the or each non-planarizing layer conforms to that of the laterally extending first layer onto the top-most non-planarizing layer, such that the lateral location of the additional layer is defined by the shape of the topographic profile of the non-planarizing layer, and whereby the additional layer is laterally aligned with the topographic profile in the first layer.
Abstract:
An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and a SAM organic-based layer is directly deposited over the oxide-based layer. Typically a series of alternating layers of oxide-based layer and organic-based layer are applied.
Abstract:
Elements having a support with lubricant on both sides can be treated to remove substantially all of the lubricant from one side only. Various chemical, mechanical and electrical treatments are contemplated, but glow discharge treatment is particularly useful. Photographic film supports having one or more layers applied thereto can be treated in this manner before or after annealing so that lubricant present on the treated side does not reduce adhesion of later applied silver halide emulsion layers.
Abstract:
A method is provided for inducing fluorescence in films or coatings comprised in whole or in part of parylene which involves exposure of the parylene to an active plasma. A method is also provided which utilizes plasma induced fluorescence as a means for quality control inspection of films and coatings of parylene such as those contained on electronic components or for identification and/or authentication of various articles.
Abstract:
A method for rendering uniform a coating applied to a substate is provided which redistributes a flowable non-uniformly applied coating with electrostatic forces after the coating has been deposited and before it solidifies. An electrostatic charging station charges the coating which, in the illustrated embodiment, is an insulative dip coating on a running length of rectangular conductive wire, as the wire emerges from a coating tank. The charged coating is passed to a coating redistribution station where shaped charged electrodes positioned to coincide with geometric high or low prints on the wire surface attract or repel coating material to cause it to flow from the more thickly to the more thinly coated regions. The redistributed coating is then dried at a drier station.
Abstract:
Multicolored tone paint compositions containing flat metallic particles are produced by subjecting an electrically conductive substrate coated with the paint composition, while wet, to ion current. The field caused by the corona current vertically orients the metallic particles in that portion of the paint subjected to the current while the metallic particles in the unexposed paint remain in horizontal orientation.
Abstract:
Novel anti-static and/or anti-reflective optical elements are produced by coating at least one surface of an organic polymeric plastic substrate with a protective organo-silica coating composition and then subjecting the coated plastic substrate to a glow discharge treatment.
Abstract:
A method for activating an exposed layer of a structure including a provision of a structure including an exposed layer, and before or after the provision of the structure, a deposition in the reaction chamber of a layer based on a material of chemical formula CxHyFz, at least x and z being non-zero. The method further includes a treatment, in the presence of the structure, of the layer based on a material of chemical formula CxHyFz by an activation plasma based on at least one from among oxygen and nitrogen. The treatment by the activation plasma is configured to consume at least partially the layer based on the material of chemical formula CxHyFz so as to activate the exposed layer of the structure.
Abstract:
A method for producing a reflection-reducing layer system on a substrate and a reflection-reducing layer system are disclosed. According to an embodiment the method includes depositing a refractive index gradient layer on the substrate by co-evaporation of an inorganic material and an organic material, wherein the refractive index gradient layer has a refractive index which decreases in a growth direction, depositing an organic layer above the refractive index gradient layer, and producing a nanostructure in the organic layer by a plasma etching process.