Abstract:
Skin for dressing backlit vehicle interior parts comprising a perforated opaque decorative layer and a light transmitting material filling the holes wherein the light transmitting material is a reactive hotmelt adhesive which forms a base layer extended over the back side of the opaque decorative layer and comprising a central portion and a transition portion surrounding the central portion and several projections protruding from the central portion of the base layer and completely filling the through holes. Method and an installation for manufacturing said skin for dressing backlit vehicle interior parts.
Abstract:
The embodiments disclose an apparatus including a dispenser having an elongated compartment configured to contain a liquid solution, a liquid solution contained in the elongated compartment configured to suspend solid nanoparticles in an evaporative liquid, a dispenser handle configured to twist to push a predetermined amount of the liquid solution from the elongated compartment out of an open tip orifice, and at least one applicator tip insertable into the tip orifice configured to receive from the elongated compartment the predetermined amount of the liquid solution to spread over a user's mobile device glass screen.
Abstract:
A coating film forming method includes holding a substrate by a substrate holder; forming an air flow on a front surface of the substrate; supplying a coating liquid configured to form a coating film on the front surface; forming, after moving a covering member from a first position to a second position relatively to the substrate, the air flow in a gap formed by the covering member placed at the second position and the front surface of the substrate being rotated at a first rotation number such that a flow velocity of the air flow becomes larger than that of the air flow obtained when the covering member is placed at the first position; and rotating the substrate at a second rotation number higher than the first rotation number to adjust a film thickness distribution of the coating film by scattering the coating liquid from a peripheral portion thereof.
Abstract:
Portable hybrid system for application of any material of drywall compound material, paint material, and texture material by the hybrid system via any of a plurality of material expulsion outlet ports, comprising: a pressurizable hollow tank for carrying material, at least one air compressor for pressurizing the material from the tank, an optionally attachable paint roller subsystem, an optionally attachable paint sprayer subsystem, an optionally attachable drywall compound applicator subsystem, an optionally attachable texture applicator subsystem, and an optionally attachable edge-cutting porous paint pad subsystem, enabling a plurality of workers to apply a given material from a single tank of the material.
Abstract:
An additive manufacturing device includes a recoater configured to push powder onto a build platform. The recoater defines an advancing direction for pushing powder. A first baffle is mounted to a first end of a leading edge of the recoater and a second baffle mounted to a second end of the leading edge of the recoater opposite the first end. Each of the first and second baffles includes a base mounted to the recoater, a first wall that extends obliquely ahead of and laterally outward from the base relative to the advancing direction, and a second wall opposite the first wall. The second wall extends obliquely ahead of and laterally inward from the base relative to the advancing direction. A volume is defined between the first and second wall with capacity to collect powder as the recoater advances.
Abstract:
Arrangements described herein include coating application systems and methods for controlling such systems. The system can include an application end configured to be operatively connected to a robot arm. The application end can include one or more nozzles to dispense a coating onto a workpiece. The application end can further include one or more brushes to brush a portion of the coating dispensed onto the workpiece. The brush can be moveable between a retracted position and a deployed position. In some arrangements, the systems can include a cleaning tool to remove excess coating from the brush after brushing.
Abstract:
A powder supplying device (2) includes a case (6) in which a storage portion (6a) is formed for temporarily storing powder (10), the case (6) having an inlet (6b) formed in an upper end of the storage portion (6a), and a rectangular outlet (6c) formed in a lower end of the storage portion (6a); a rotor (7) that is arranged in the case (6) and transports the powder (10) in the storage portion (6a) to the outlet (6c) by rotating; and a mesh body (8) through which the powder (10) that has been transported to the outlet (6c) passes. The powder supplying device (2) supplies the powder (10) onto an upper surface of an electrode foil (5). The rotor (7) has a brush-like shape, with a plurality of hair members (7b) radially implanted pointing radially outward with an axial center (G) of the rotor (7) as the center.
Abstract:
The present disclosure provides methods, device, and system for wafer processing. The wafer processing apparatus uses lid dispenser to disperse at least one reagent to the surface of the wafer. Further, the wafer is positioned on top of a rotatable vacuum chuck configured to spread at least one reagent over the surface of the wafer via a centrifugal force or surface tension, thereby permitting the at least one reagent to react with an additional reagent. Further, when dispensing the at least one reagent, a separation gap between the lid dispenser and the wafer is at a predetermined distance, for example, from 50 μm to 2 mm.
Abstract:
A coating treatment apparatus supplying a coating solution to a front surface of a rotated substrate and diffusing the supplied coating solution to an outer periphery side of the substrate to thereby apply the coating solution on the front surface of the substrate includes: a substrate holding part holding a substrate; a rotation part rotating the substrate held on the substrate holding part; a supply part supplying a coating solution to a front surface of the substrate held on the substrate holding part; and an airflow control plate provided at a predetermined position above the substrate held on the substrate holding part for locally changing an airflow above the substrate rotated by the rotation part at an arbitrary position.
Abstract:
A method of coating a substrate with a liquid comprising a catalyst component, the method comprising: (a) holding the substrate vertically, thereby defining upper and lower ends thereof, wherein the vertical substrate comprises a plurality of channels that are open at said upper and lower ends; (b) continuously introducing the liquid into the substrate by pushing or injecting the liquid through the open ends of the channels at the lower end of the substrate with a piston; and (c) after the lower end of the substrate has been partly filled with the liquid in step (b), applying a vacuum to the open ends of the channels at the upper end of the substrate while continuing to introduce the liquid into the substrate.