Abstract:
In one aspect, a method comprises: providing a substrate having at least one layer in which the patterned dot array is to be fabricated; depositing a nanoparticle layer, wherein the nanoparticle layer comprises one or more surfactants and nanoparticles coated with the one or more surfactants; treating the one or more surfactants that coat the nanoparticles and the portions of the one or more surfactants that fill the spaces among the nanoparticles; removing the portions of the one or more surfactants that fill the spaces among the nanoparticles to expose portions of the at least one layer in which the patterned dot array is to be fabricated; etching the exposed portions of the at least one layer in which the patterned dot array is to be fabricated; and removing at least a portion of the nanoparticles.
Abstract:
A method of making a multi-layer biocidal structure includes providing a support and locating a first curable layer on the support. A second curable layer is located on the first curable layer, the second curable layer having multiple biocidal particles dispersed within the second curable layer. The first curable layer and the second curable layer are imprinted in a single step with an imprinting stamp having a structure with a depth greater than the thickness of the second curable layer. The first curable layer and the second curable layer are cured in a single step to form a first cured layer and a second cured layer. The imprinting stamp is removed.
Abstract:
In one aspect, a method comprises: providing a substrate having at least one layer in which the patterned dot array is to be fabricated; depositing a nanoparticle layer, wherein the nanoparticle layer comprises one or more surfactants and nanoparticles coated with the one or more surfactants; treating the one or more surfactants that coat the nanoparticles and the portions of the one or more surfactants that fill the spaces among the nanoparticles; removing the portions of the one or more surfactants that fill the spaces among the nanoparticles to expose portions of the at least one layer in which the patterned dot array is to be fabricated; etching the exposed portions of the at least one layer in which the patterned dot array is to be fabricated; and removing at least a portion of the nanoparticles.
Abstract:
The present invention relates to an organic/inorganic hybrid hierarchical structure comprising: a polymer electrolyte layer which formed on a base and which has a rough surface; and an inorganic nano-structure formed on the rough surface of the polymer electrolyte layer. The present invention also relates to a method for manufacturing superhydrophobic or superhydrophilic surface using the organic/inorganic hybrid hierarchical structure.
Abstract:
A machine for atmospheric plasma treatment of continuous material substrates comprises means for feeding a substrate for moving it along a feed path; at least two electrodes each positioned at one face of the substrate, each electrode facing a respective face of the substrate, a difference in electric potential being applicable across the electrodes for generating an electric discharge; the feed means comprising at least one first roller and one second roller, the first roller and the second roller coinciding with respective electrodes and each acting on a respective face of the substrate.
Abstract:
Provided is a method for manufacturing a flexible metal-clad laminate using a casting method, including: (a) forming a first polyimide layer having a coefficient of linear thermal expansion of 25 ppm/K or less above a metal layer; (b) plasma-treating a surface of the first polyimide layer; and (c) forming a second polyimide layer having a coefficient of linear thermal expansion of 25 ppm/K or lower above the first polyimide layer. The flexible metal-clad laminate according to the present invention can have excellent adhesion between the polymer film and the metal conductive layer, a low dimensional change, and a low production cost, because of superior casting workability, even though the thickness of polyimide becomes increased.
Abstract:
The invention relates to polymer foil comprising at least one polymer layer coated with a barrier glass coating of an oxide composition, wherein said oxide composition comprises the element Si in the form of an oxide network, the oxide composition preferably comprises Si and at least one other element X in an oxide network. The oxide network may preferably be applied using plasma. The foil may be a multi-layered foil comprising a plurality of layers, at least one of the layers being a barrier glass coating. The foil has good barrier properties.
Abstract:
The invention relates to the application of a coating to a substrate in which the coating includes a polymer material and the coating is selectively fluorinated and/or cured to improve the liquid repellance of the same. The invention also provides for the selective fluorination and/or curing of selected areas of the coating thus, when completed, providing a coating which has regions of improved liquid repellance with respect to the remaining regions and which remaining regions may be utilized as liquid collection areas.
Abstract:
An article is disclosed that has a patterned surface containing alternating hydrophobic and hydrophilic surface regions. The hydrophobic regions may be sufficiently narrow such that under dew conditions moisture accumulated on the hydrophobic region migrates to the hydrophilic region, thus preventing the accumulation of water droplets. In frost conditions, the hydrophobic region remains relatively frost-free, thus maintaining at least partial transparency of the surface. Inorganic oxide particles on the surfaces of the hydrophobic regions may provide abrasion resistance. A method for making the patterned surfaces is disclosed in which a treatment removes organic binder to expose inorganic oxide particles at the surface of the hydrophilic regions.
Abstract:
Disclosed is a composite metal sheet to be produced by chemically treating the surface of a metal substrate, coating and drying an organic resin-based composition thereon to form a undercoat layer, then coating thereon a two-layered resin interlayer composed of an adhesive layer of a modified polyolefin resin and a polyolefin resin layer at a thickness of from 50 to 300 .mu.m, then modifying the surface of said polyolefin resin layer by flame treatment or corona discharging treatment thereby forming functional groups in an amount of from 0.05 to 0.30 in terms of O/C representing the ratio of the amount of oxygens in the functional groups to the amount of carbons on the surface, and finally coating and drying an urethane-curing polyester resin paint or an urethane-curing fluorine resin paint at a thickness of from 8 to 35 .mu.m to form a top coat layer. The composite metal sheet has excellent corrosion resistance, weather resistance and formability.