Abstract:
A method for providing data useful in procedures associated with the oral cavity, in which at least one numerical entity representative of the three-dimensional surface geometry and color of at least part of the intra-oral cavity is provided and then manipulated to provide desired data therefrom.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems. Improved shade matching/prediction results are obtained through the use of volumes/regions, preferably polygons, around shades in a shade system.
Abstract:
A method of making a patient's dental prosthesis (e.g., a prosthesis tooth, crown, veneer, or bridge) by acquiring an image of the patient's teeth that contains black and white normalization references. These references are black and white porcelain, for example, that allow software of the invention to determine absolute black and absolute white within the color image. The acquired color image is then normalized in accordance with the normalization references, which corrects the image for variations in lighting conditions and image source. The normalized image is then standardized by matching the pixels of the normalized image to selected shade standards. The dental prosthesis can then be manufactured by a lab technician by referring to the standardized image. The tooth shade analysis and matching system is also applicable to direct restorations of natural teeth, such as repair of chipped or broken teeth. Methods of whitening teeth are also disclosed.
Abstract:
The invention relates to a computer readable medium comprising one or more programs for carrying out a method for determining a patient's tooth shade. The method generally includes the steps of generating an image of a patient's tooth wherein the image includes color information representative of the patient's tooth shade; storing color information representative of a plurality of tooth shades; and comparing the color information of the image with the stored tooth shade color information to identify one or more tooth shades having a combined color that corresponds to the patient's tooth shade, and the color information that is obtained may be displayed to identify one or more tooth shades having a combined color corresponding to the determined tooth color. Preferably, the displayed data includes RGB chromaticities of the color image, and the patient's tooth color is determined by averaging the color information at selected locations of the image which correspond to different spatial locations of the patient's tooth. If desired, the color information of the patient's tooth can be electronically stored for use at a later time.
Abstract:
An instrument and related process for measuring color, shade, gloss, shape and/or translucence of a tooth. First, the instrument uses searchlight illumination to illuminate a tooth with constant irradiance. Second, the instrument uses colorimetric imaging to collect time-separated frames of different wavelengths of light reflected from a tooth and to combine those frames into a color image. Third, the instrument includes a sanitary shield to establish a reference color and a predetermined distance to a target tooth. Fourth, the instrument provides line-of-sight viewing so an operator may simultaneously view a display of the image on the instrument and the object being measured. Fifth, the instrument is impervious to pollutants because it incorporates a sealed measurement window. Sixth, optical measurements of a tooth taken by a dentist are compared to optical measurements of a prosthetic restoration for that tooth to confirm satisfactory matching of optical characteristics of the tooth and restoration.
Abstract:
The invention relates to a method for restoration of a patient's tooth. An electronic image of a patient's tooth or tooth preparation is generated in a dentist's office by the dentist. The image includes color information of the tooth preparation or of the patient's tooth shade. The electronic image is forwarded to a dental laboratory by direct computer link or e-mail. A technician at the laboratory evaluates the image and suggests restorative options to the dentist, including whether further tooth preparation is required. The technician also selects the appropriate restoration tooth shade(s) so that the dental prosthesis matches the color of the patient's tooth. The laboratory then manufactures the prosthesis utilizing a plurality of porcelain coatings. If desired, an image of the prosthesis can be generated in the laboratory and forwarded to the dentist for verification of color and/or fit prior to finalizing manufacture of the prosthesis.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
The invention is a colorimeter for dental applications comprising a hand-held probe, similar in size to a dental drill, attached by an electrical cable to a small self-contained display module. The calorimeter provides the capability for measuring the colors of a number points along a line on the surface of an object such as a tooth. A measurement is made while placing the tip of the probe against, or in close proximity to, the surface of the object. The display module to which probe attaches contains a microprocessor and provides a control, display and data interface to the operator. The display module can be adapted for fastening to the wrist of the operator thereby leaving both hands free to manipulate the probe and other tools. The calorimeter is particularly well suited for measuring the color of teeth in a dentist's office in preparation for making dental prostheses which accurately match the color of natural teeth. The colorimeter generates from a single measurement an array of color data points measured along a line on the surface of an object. From those data points, the processor can perform statistical analysis yielding a single color value, generate and display a color profile along a surface, compare measured values with a preloaded table of values, or upload color data to a remote location for laboratory or manufacturing purposes. The colorimeter can also use variations in the color values measured along a line to identify boundaries of areas on a surface. For example, the color profile can be used to identify the gum line on a tooth. The probe comprises multiple light emitting diodes (LEDs) for successively emitting light of different colors toward a surface, a linear photosensor array for receiving light reflected from the surface, and a lens for directing light from the target to the array, all contained within the probe itself. The calorimeter may also comprise a cradle for storing the probe and display module when not in use. The cradle may provide a battery charger, calibration references, and data links for uploading or downloading data from a remote location.