Abstract:
The invention relates to a multiple beam charged particle optical system, comprising an electrostatic lens structure with at least one electrode, provided with apertures, wherein the effective size of a lens field effected by said electrode at a said aperture is made ultimately small. The system may comprise a diverging charged particle beam part, in which the lens structure is included. The physical dimension of the lens is made ultimately small, in particular smaller than one mm, more in particular less than a few tens of microns. In further elaboration, a lens is combined with a current limiting aperture, aligned such relative to a lens of said structure, that a virtual aperture effected by said current limiting aperture in said lens is situated in an optimum position with respect to minimizing aberrations total.
Abstract:
Provided is an ion implanter having a deceleration lens assembly comprising a plurality of electrodes in which one or more of the apertures of the deceleration electrodes are shaped in a manner which can improve performance of the ion implanter. In one embodiment, an electrode aperture is generally elliptical in shape and conforms generally to the shape of the beam passing through the aperture. In another aspect, an axis segment extends 40% of the length of the aperture from the aperture center to an intermediate point at the end of the segment. The average width of the aperture measured at each point from the center to the intermediate point is substantially less than the maximum width of the aperture.
Abstract:
The invention concerns a column for producing a focused particle beam comprising: a device (100) focusing particles including an output electrode (130) with an output hole (131) for allowing through a particle beam (A); an optical focusing device (200) for simultaneously focusing an optical beam (F) including an output aperture (230). The invention is characterized in that said output aperture (230) is transparent to the optical beam (F), while said output electrode (130) is formed by a metallic insert (130) maintained in said aperture (230) and bored with a central hole (131) forming said output orifice.
Abstract:
The invention concerns a column for producing a focused particle beam comprising: a device (100) focusing particles including an output electrode (130) with an output hole (131) for allowing through a particle beam (A); an optical focusing device (200) for simultaneously focusing an optical beam (F) including an output aperture (230). The invention is characterized in that said output aperture (230) is transparent to the optical beam (F), while said output electrode (130) is formed by a metallic insert (130) maintained in said aperture (230) and bored with a central hole (131) forming said output orifice.
Abstract:
An apparatus and a method to manipulate at least one beam of charged particles are provided. The apparatus comprises two rows of field source members 13 which are disposed periodically at a distance from each other such that there exist planes of symmetry S, S′ with respect to which the field source members 13 are symmetrically disposed. The field has a component which is displaceable in the x-direction. To provide such field, a pattern of source strengths according to the formula F1(x)=Fm(x)+Fc(x) is applied to the field source members, wherein Fm is a component which is substantially independent of the displacement x0 and Fc is a correction component which is dependent on x0.
Abstract translation:提供了一种操纵至少一个带电粒子束的装置和方法。 该装置包括两排场源元件13,它们周期性地彼此间隔设置,使得存在对称S,S'的平面,场源元件13对称地设置对准面。 该场具有可在x方向上移位的分量。 为了提供这样的场,根据公式F 1(x)= F m(x)+ F c(x) x)被施加到场源成员,其中F m是基本上独立于位移x 0和F C 1的分量 取决于x <0>的校正分量。
Abstract:
The invention concerns a column for producing a focused particle beam comprising: a device (100) focusing particles including an output electrode (130) with an output hole (131) for allowing through a particle beam (A); an optical focusing device (200) for simultaneously focusing an optical beam (F) including an output aperture (230). The invention is characterised in that said output aperture (230) is transparent to the optical beam (F), while said output electrode (130) is formed by a metallic insert (130) maintained in said aperture (230) and bored with a central hole (131) forming said out-put orifice.
Abstract:
A charged-particle microscope having a vacuum chamber comprises a specimen holder, a particle-optical column, a detector and an exchangeable column extending element. The specimen holder is for holding a specimen. The particle-optical column is for producing and directing a beam of charged particles along an axis so as to irradiate the specimen. The column has a terminal pole piece at an extremity facing the specimen holder. The detector is for detecting a flux of radiation emanating from the specimen in response to irradiation by the beam. The exchangeable column extending element is magnetically mounted on the pole piece in a space between the pole piece and the specimen holder. Methods of using the microscope are also disclosed.
Abstract:
An ion beam scanning assembly includes a set of scanning electrodes defining a gap to accept an ion beam and scan the ion beam in a first plane, and a multipole electrostatic lens system comprising a plurality of electrodes arranged along a portion of a path of travel of the ion beam bounded by the pair of scanning electrodes, the multipole electrostatic lens system configured to shape the ion beam in a direction perpendicular to the first plane.
Abstract:
A projection lens arrangement for a charged particle multi-beamlet system, the projection lens arrangement including one or more plates and one or more arrays of projection lenses. Each plate has an array of apertures formed in it, with projection lenses formed at the locations of the apertures. The arrays of projection lenses form an array of projection lens systems, each projection lens system comprising one or more of the projection lenses formed at corresponding points of the one or more arrays of projection lenses.
Abstract:
Provided is an electrostatic lens for charged particle radiation with a lens performance relatively comparable to that of a magnetic type lens. A plurality of electrodes arranged on the incident side of charged particles form a first electric field area, wherein orbit radii of the charged particles are reduced without exceeding, on the way, the initial orbit radii that are orbit radii at the incident time, and a second electric field area, wherein force in the direction advancing in parallel with a central axis is applied to the charged particles that have passed through the first electric field area. A plurality of electrodes arranged on the projection side form a third electric field area, wherein the orbit radii of the charged particles do not exceed the initial orbit radii on the way and are curved to intersect with a central axis at angles larger than orbit angles defined with respect to the central axis of when the charged particles are projected from the second electric field area.