Abstract:
A method of mass spectrometry is disclosed comprising repeatedly or continuously causing first analyte sample to be released or ejected from a first sample. A determination is made as to whether or not a quality threshold such as an intensity threshold has been met or exceeded, wherein if the quality threshold has been met or exceeded then the method further comprises repeatedly or continuously causing second analyte sample to be released or ejected from a second sample.
Abstract:
Technologies for rapid equilibration for water isotope analysis are disclosed. In at least one illustrative embodiment, a vaporizer may include an injection block that defines a chamber and a septum positioned over an inlet of the chamber to seal the chamber. The chamber may be configured to be fluidly coupled to a pump to develop a vacuum within the chamber, and the septum may be configured to receive a needle that is inserted into the chamber. A thermally conductive wool may be positioned within the chamber and may be configured to receive a tip of the needle.
Abstract:
A trace of intensity versus time values is received for a series of samples produced by a mass spectrometer. Also, a series of ejections times corresponding to the series of samples produced by a sample introduction system is received. A series of expected peak times corresponding to the series of ejection times are calculated using a known delay time from ejection to mass analysis. At least one isolated peak of the trace is identified using the series of expected peak times. A peak profile is calculated by fitting a mixture of at least two different distribution functions to the at least one isolated peak. For at least one time of the series of expected peak times, an area of a peak at the one time is calculated by fitting the peak profile to the trace at the one time and calculating an area of the fitted peak profile.
Abstract:
A sample introduction system providing variable online dilution of a sample is described. In one or more implementations, a device includes a spectrometry analysis system that employs example techniques in accordance with the present disclosure includes an inline dilution environment, including a first valve assembly configured to prepare a sample by accepting at least one of the sample, a diluent, a carrier, or an internal standard, where the first valve assembly includes a first sample loop; and a second valve assembly configured to prepare the sample by accepting the sample from the first valve assembly, where the second valve assembly is coupled to the first valve assembly, and where the second valve assembly includes a second sample loop.
Abstract:
A system and method are provided for loading a sample into an analytical instrument using acoustic droplet ejection (“ADE”) in combination with a continuous flow sampling probe. An acoustic droplet ejector is used to eject small droplets of a fluid sample containing an analyte into the sampling tip of a continuous flow sampling probe, where the acoustically ejected droplet combines with a continuous, circulating flow stream of solvent within the flow probe. Fluid circulation within the probe transports the sample through a sample transport capillary to an outlet that directs the analyte away from the probe to an analytical instrument, e.g., a device that detects the presence, concentration quantity, and/or identity of the analyte. When the analytical instrument is a mass spectrometer or other type of device requiring the analyte to be in ionized form, the exiting droplets pass through an ionization region, e.g., an electrospray ion source, prior to entering the mass spectrometer or other analytical instrument. The method employs active flow control and enables real-time kinetic measurements.
Abstract:
An ion source for a mass spectrometer is disclosed comprising an ultrasonic transducer which focuses ultrasonic energy onto a surface of a sample fluid without directly contacting the sample fluid.
Abstract:
An ion source is disclosed comprising a nebulizer and a target. The nebulizer is arranged and adapted to emit, in use, a stream of analyte droplets which are caused to impact upon the target and to ionize analyte to form a plurality of analyte ions. The target is vibrated by a piezo-electric vibration device to reduce the size of resultant secondary droplets.
Abstract:
A method and apparatus for introducing droplets of liquid sample into an analysis device using a gas stream, the droplets being produced by the application of acoustic energy to a quantity of liquid sample. Acoustic energy may be applied to a quantity of liquid sample located on a solid surface of a sample support so as to eject a droplet of sample from the quantity of sample; the droplet of sample may be entrained in a gas stream; and the droplet of sample may be transported into the analysis device using the gas stream.
Abstract:
A mass spectrometer is disclosed comprising a separation device arranged and adapted to emit an eluent over a period of time. The separation device preferably comprises a Capillary Electrophoresis (“CE”) separation device. The mass spectrometer further comprises a nebuliser and a target. Eluent emitted by the separation device is nebulised, in use, by the nebuliser wherein a stream of analyte droplets are directed to impact upon the target so as to ionise the analyte to form a plurality of analyte ions.
Abstract:
A mass spectrometry method includes a step of atomizing liquid including a sample using an ultrasonic transducer; a step of transferring the atomized liquid; a step of generating ions from the transferred liquid using a DART ion source; and a step of analyzing a mass spectrometry by introducing the generated ions into a mass spectrometer.