Abstract:
Deposited thin-film dielectrics having columnar grains and high dielectric constants are formed on heat treated and polished metal foil. The sputtered dielectrics are annealed at low oxygen partial pressures.
Abstract:
In a method for manufacturing a printed circuit board with a thin film capacitor embedded therein, a conductive metal is sputtered via a first mask to form a lower electrode. A dielectric material is sputtered via a second mask to form a dielectric layer. The conductive metal is sputtered via a third mask to form an upper electrode. An insulating layer is stacked on a stack body with the upper electrode formed therein and via holes are perforated from a top surface of the insulating layer to a top surface of the lower electrode and from the top surface of the insulating layer to a top surface of the upper electrode formed on the substrate. Also, the stack body with the via holes formed therein is electrolytically and electrolessly plated.
Abstract:
Miniature circuitry and inductor components in which multiple levels of printed circuitry are formed on each side of a support panel, typically a printed circuit board or rigid flex. Magnetic members are embedded in one or more cavities in said support panel. Electrical connection between the plural levels of circuitry and multiple windings around the magnetic members are provided by plural plated through hole conductors. Small through hole openings accommodate a plurality of the plated through hole conductors since each is insulated from the others by a very thin layer of vacuum deposited organic layer such as parylene having a high dielectric strength. Adhesion of this plated copper to the organic layer is provided by first applying an adhesive promotor to the surface of the organic layer followed by the vacuum deposition of the organic layer.
Abstract:
A multilayer printed wiring board which permits the formation of fine wiring patterns, thereby increasing the density of wiring patterns. Using photosensitive glass having a coefficient of thermal expansion close to that of a copper film as a core substrate, a through hole is formed in the photosensitive glass by photolithography, a sputtering silicon oxide layer and a sputtering silicon nitride layer are formed to prevent leak of alkali metal ions from the photosensitive glass, a sputtering chromium layer, a sputtering chromium-copper layer and a sputtering copper layer are formed to enhance the adhesion strength between the copper film and the sputtering silicon oxide layer, and a copper film of 1 to 20 μm thick is formed. With resin filled into the interior of the through hole, a wiring layer is patterned by etching, an insulating layer is formed, and the surface is covered with a surface treatment layer and a cover coat.
Abstract:
A method of forming an isolated electrically conductive contact through a metal substrate by creating at least one via through the substrate. The at least one sidewall of the via is cleaned and coated with a non-conductive layer. In one example, the non-conductive layer is formed by anodizing the sidewall(s) of the via. In another example, the non-conductive layer may be formed by thin film deposition of a dielectric on the sidewall(s). An electrically conductive filler is then placed into the via. In the examples disclosed, the filler may be a conductive ink or a conductive epoxy.
Abstract:
A system and method for the fabrication of high reliability capacitors (1011), inductors (1012), and multi-layer interconnects (1013) (including resistors (1014)) on various thin film hybrid substrate surfaces (0501) is disclosed. The disclosed method first employs a thin metal layer (0502) deposited and patterned on the substrate (0501). This thin patterned layer (0502) is used to provide both lower electrodes for capacitor structures (0603) and interconnects (0604) between upper electrode components. Next, a dielectric layer (0705) is deposited over the thin patterned layer (0502) and the dielectric layer (0705) is patterned to open contact holes (0806) to the thin patterned layer. The upper electrode layers (0907, 0908, 1009, 1010) are then deposited and patterned on top of the dielectric (0705).
Abstract:
An interposer 2 comprising a base 10 formed of a plurality of resin layers 26, 34, 42, 52, 56; a thin-film capacitor 12 buried in the base 10, including a lower electrode 20, a capacitor dielectric film 22 and an upper electrode 24; a first through-electrode 14b formed through the base 10 and electrically connected to the upper electrode 24 of the thin-film capacitor 12; and a second through-electrode 14a formed through the base 10 and electrically connected to the lower electrode 20 of the thin-film capacitor 12, further comprising: an interconnection 48 buried in the base 10 and electrically connected to the respective upper electrodes 24 of a plurality of the thin-film capacitors 12, a plurality of the first through-electrodes 14b being electrically connected to the upper electrodes 24 of said plurality of the thin-film capacitors 12 via the interconnection 48, and said plurality of the first through-electrodes 14b being electrically interconnected by the interconnections 48.
Abstract:
Miniature circuitry and inductor components in which multiple levels of printed circuitry are formed on each side of a support panel, typically a printed circuit board or rigid flex. Magnetic members are embedded in one or more cavities in said support panel. Electrical connection between the plural levels of circuitry and multiple windings around the magnetic members are provided by plural plated through hole conductors. Small through hole openings accommodate a plurality of the plated through hole conductors since each is insulated from the others by a very thin layer of vacuum deposited organic layer such as parylene having a high dielectric strength. Adhesion of this plated copper to the organic layer is provided by first applying an adhesive promotor to the surface of the organic layer followed by the vacuum deposition of the organic layer.
Abstract:
The wiring board comprises a plate-shaped conductive core material 10 with a through-hole 12 formed in, an insulation layer 14 formed on the surface of the conductive core material 10 and on the inside wall of the through-hole 12, a resin 18 buried in the through-hole 12 with the insulation layer 14 formed in, wirings 22a, 22b formed on the upper surface and the undersurface of the conductive core material 10 with the insulation layer 14 formed on, and an wiring 22d formed in the through-hole 20 formed in the resin 18 and electrically connected to the wirings 22a, 22b.
Abstract:
According to one embodiment of the disclosure, an environmental protection coating comprises a circuit assembly having a first protective dielectric layer and a second dielectric layer. The circuit assembly has an outer surface on which a plurality of discrete electrical components are attached. The first protective dielectric layer overlays the circuit assembly. The second dielectric layer overlays the first protective dielectric layer and is made of a dielectric material having modulus of elasticity less than 3.5 Giga-Pascal (GPa), dielectric constant less than 2.7, dielectric loss less than 0.008, breakdown voltage strength in excess of 2 million volts/centimeter (MV/cm), temperature stability to 3000 Celsius, defect densities less than 0.5/centimeter, pinhole free in films greater than 50 Angstroms, capable of being deposited conformally over and under 3D structures with thickness uniformity less than or equal to 10%.