Abstract:
An electrical conductor includes a first conductive layer including a plurality of metal oxide nanosheets, wherein a metal oxide nanosheet of the plurality of metal oxide nanosheets includes a proton bonded to a the surface of the metal oxide nanosheet, wherein the metal oxide is represented by Chemical Formula 1: MO2 Chemical Formula 1 wherein M is Re, V, Os, Ru, Ta, Ir, Nb, W, Ga, Mo, In, Cr, Rh, or Mn, wherein the plurality of metal oxide nanosheets has a content of hydrogen atoms of less than about 100 atomic percent, with respect to 100 atomic percent of metal atoms as measured by Rutherford backscattering spectrometry, and wherein the plurality of metal oxide nanosheets includes an electrical connection between contacting metal oxide nanosheets.
Abstract:
A wiring board includes a first insulating layer coating a first wiring layer. A first through hole is opened in a surface of the first insulating layer and exposes a surface of the first wiring layer. A first via arranged in the first through hole includes an end surface exposed to the surface of the first insulating layer. A gap is formed between the first insulating layer and the first via in the first through hole. A second wiring layer is stacked on the surface of the first insulating layer and the end surface of the first via. The second wiring layer includes a pad filling the gap. The pad is greater in planar shape than the first through hole.
Abstract:
A circuit board is disclosed. In addition to insulating layers, the circuit board includes a structure for heat transfer that includes a first layer that is formed of graphite or graphene, a second layer that is formed of metallic material and disposed on one surface of the first layer, and a third layer that is formed of metallic material and disposed on the other surface of the first layer, and at least a portion of the structure for heat transfer is inserted into an insulation layer. Such a circuit board provides improved heat management. Also disclosed is a method of manufacturing the circuit board.
Abstract:
A printed wiring board includes a resin insulating layer having recess portions formed on first surface, a first conductor layer formed in the recess portions and including pads positioned to mount an electronic component, conductive pillars formed on the pads, respectively, and formed to mount the electronic component onto the resin insulating layer, a second conductor layer formed on second surface of the resin insulating layer on the opposite side with respect to the first surface, and a via conductor formed in the resin insulating layer such that the via conductor is penetrating through the resin insulating layer and connecting the first and second conductor layers. The pillars is formed such that each of the pads has an exposed surface exposed from a respective one of the conductive pillars, and the pads are formed such that the exposed surface is recessed from the first surface of the resin insulating layer.
Abstract:
A chip part includes a substrate, a first electrode and a second electrode which are formed apart from each other on the substrate and a circuit network which is formed between the first electrode and the second electrode. The circuit network includes a first passive element including a first conductive member embedded in a first trench formed in the substrate and a second passive element including a second conductive member formed on the substrate outside the first trench.
Abstract:
The present subject matter provides for a multi-layer conductive trace. The trace can be formed by digital printing the individual layers and firing. The individual layers each impart functional characteristics to the conductive trace and each layer has components that can be adjusted to affect the performance characteristics of that particular layer without detrimentally affecting the performance characteristics of the remaining layers.
Abstract:
A method of operating an imprinted electronic sensor to sense an environmental factor includes providing spatially separated micro-channels in a cured layer on a substrate. A multi-layer micro-wire is formed in each micro-channel. Each multi-layer micro-wire includes at least a conductive layer and a reactive layer exposed to the environmental factor. The conductive layer is a cured electrical conductor located only within the micro-channel and at least a portion of the reactive layer responds to the environmental factor. A controller is provided for electrically controlling first and second groups of multi-layer micro-wires, each first and second group including one or more multi-layer micro-wires. The reactive layer is exposed to the environment. The controller measures the electrical response of the first and second groups of multi-layer micro-wires. The electrical response includes at least one of the amperometric response, the resistance, the capacitance, the impedance, the complex impedance, or the inductance.
Abstract:
The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating differential wiring patterns in multilayer glass-ceramic (MLC) modules. A structure and method of forming a MLC having layers with staggered, or offset, pairs of lines formed directly on one another are disclosed. In addition, a structure and method of forming a MLC having layers with staggered, or offset, pairs of lines that periodically reverse polarity are disclosed.
Abstract:
The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating differential wiring patterns in multilayer glass-ceramic (MLC) modules. A structure and method of forming a MLC having layers with staggered, or offset, pairs of lines formed directly on one another are disclosed. In addition, a structure and method of forming a MLC having layers with staggered, or offset, pairs of lines that periodically reverse polarity are disclosed.
Abstract:
The present invention provides a liquid composition used for etching a multilayer film containing copper and molybdenum, an etching method for etching a multilayer film containing copper and molybdenum, and a substrate. The present invention further provides a liquid composition for etching a multilayer-film wiring substrate which has an oxide layer (IGZO) including indium, gallium and zinc laminated on the substrate, and further a multilayer film including at least a layer containing molybdenum and a layer containing copper provided thereon, a method for etching a multilayer film containing copper and molybdenum from the substrate, and a substrate. According to the present invention, a liquid composition comprising (A) a maleic acid ion source, (B) a copper ion source, and (C) at least one type of amine compound selected from the group consisting of 1-amino-2-propanol, 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(butylamino)ethanol, 2-(dimethylamino)ethanol, 2-(diethylamino)ethanol, 2-methoxyethylamine, 3-methoxypropylamine, 3-amino-1-propanol, 2-amino-2-methyl-1-propanol, 1-dimethylamino-2-propanol, 2-(2-aminoethoxyl)ethanol, morpholine and 4-(2-hydroxyethyl)morpholine and having a pH value of 4-9 is used.