Abstract:
A method for manufacturing a wiring substrate includes forming a through-hole penetrating a core layer from one to another surface of the core layer, forming a first metal layer covering the one and the other surface of the core layer and an inner wall surface of the through-hole, forming a second metal layer on the first metal layer, and forming a patterned third metal layer on the second metal layer toward the one surface of the core layer along with forming a patterned fourth metal layer on the second metal layer toward the other surface of the core layer. The forming of the second metal layer includes covering the one and the other surfaces of the core layer and the first metal layer in the through-hole with the second metal layer and closing up a center part of the through-hole with the second metal layer.
Abstract:
A printed circuit board has a core substrate, a first conductive pattern on first surface of the substrate, a second conductive pattern on second surface of the substrate, and a through-hole conductor formed of plated material through the substrate such that the conductor is connecting the first and second patterns. The plated material is filling a through hole in the substrate, the substrate includes an insulation layer including inorganic fiber and resin, a first resin layer on one surface of the insulation layer and having the first surface of the substrate, and a second resin layer on the opposite surface of the insulation layer and having the second surface of the substrate, the first and second resin layers do not contain inorganic fiber material, and the sum of thicknesses of the first and second resin layers is set in the range of 20% or less of thickness of the substrate.
Abstract:
A wiring substrate is provided with a substrate core including a first main surface, a second main surface, and a through hole. An electronic component is arranged in the through hole. A projection projects from a wall of the through hole toward a connection terminal of the electronic component. An insulator is filled between the wall of the through hole and the electronic component. A first insulation layer covers the electronic component and the first main surface. A second insulation layer covers the electronic component and the second main surface. The electronic component includes an electronic component body and the connection terminal formed on a side of the electronic component body. The connection terminal of the electronic component includes an engagement groove formed by the projection and extending along a direction in which the electronic component is fitted into the through hole.
Abstract:
Disclosed herein is a method of manufacturing a printed circuit board, the method including: preparing a base substrate having an insulating layer and a connection pad formed in the insulating layer; forming a photosensitive resist on the insulating layer; forming an opening part of which a side surface has a foot shape by patterning the photosensitive resist; forming a via hole exposing the connection pad by etching the insulating layer exposed by the opening part; and forming a via by filling the via hole.
Abstract:
An electrical interconnect has an adhesive layer in which is formed an array of apertures, the apertures being of non-circular shape. An electrical circuit apparatus has a first circuit having at least one electrical contact, a second circuit having at least one electrical contact aligned to the electrical contact of the first circuit, and a standoff structure between the first and second circuits having at least one aperture aligned to one electrical contact of the first and second circuits, the aperture being of a non-circular shape.
Abstract:
An integrated circuit package system includes a substrate, forming a resist layer having an elongated recess over the substrate, forming a via in the substrate below the elongated recess, and forming an elongated bump in the elongated recess over the via.
Abstract:
An electrical circuit structure can include a first trace formed using a first conductive layer and a second trace formed using a second conductive layer. The first trace can be vertically aligned with the second trace. The electrical circuit structure can include a via segment formed of conductive material in a third conductive layer between the first conductive layer and the second conductive layer. The via segment can contact the first trace and the second trace forming a first conductor structure configured to convey an electrical signal in a direction parallel to the first conductive layer.
Abstract:
The present invention relates to a method for manufacturing large lighting which uses a power LED, such as for large LED lighting for street lamps, which incorporates a heat dissipation device that has the ability to dissipate heat with natural convection to maintain ambient temperature. The disclosed method is novel applied technology for producing a large LED lighting, such as for street lamps, which has a power LED device with a unique, rear heat dissipation capability. In addition to maximum thermal efficiency by heat dissipation, the present LED lighting system also increases luminous efficiency by providing high light emission with only a small quantity of LED power.
Abstract:
A system for providing power and ground vias for power distributions systems includes first and second conductive layers on a microelectronic package. The conductive layers may include one or more conductive components such as, but not limited to, power planes, ground planes, pads, traces, and the like for electrically connecting to electronic components. A via may electrically connect the first and second conductive layers. The via may have a cross-section of at least three partially-overlapping shapes. Each of the shapes partially overlaps at least two of the other shapes. The shapes may be, for example, circular, triangular, rectangular, square, polygonal, rhomboidal shape, or any other shape.
Abstract:
Partitioned vias, interconnects, and substrates that include such vias and interconnects are disclosed herein. In one embodiment, a substrate has a non-conductive layer and a partitioned via formed in a portion of the non-conductive layer. The non-conductive layer includes a top side, a bottom side, and a via hole extending between the top and bottom sides and including a sidewall having a first section a second section. The partitioned via includes a first metal interconnect within the via on the first section of the sidewall and a second metal interconnect within the via hole on the second section of the sidewall and electrically isolated from the first metal interconnect. In another embodiment, the first metal interconnect is separated from the second metal interconnect by a gap within the via hole.