Abstract:
An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
Abstract:
A method of producing a chip embedded substrate is disclosed. This method comprises a first step of mounting a semiconductor chip on a first substrate on which a first wiring is formed; and a second step of joining the first substrate with a second substrate on which a second wiring is formed. In the second step, the semiconductor chip is encapsulated between the first substrate and the second substrate and electrical connection is made between the first wiring and the second wiring so as to form multilayered wirings connected to the semiconductor chip.
Abstract:
A substrate, a chip, a circuit package and a process of fabricating a substrate are presented. The substrate is provided between an integrated circuit and a printed circuit board, and comprises a core insulating and a buildup insulating layer. The first plated through hole is operable to provide ground through from the printed circuit board to the integrated circuit. The second plated through hole is operable to provide electrical communication carrying signals or power between the integrated circuit and the printed circuit board through the buildup insulating layers. The first plated through hole is formed in tubular shape defined an outer wall and an inner wall, and the second plated through hole is formed in the inner wall and is insulated with the first plated through hole.
Abstract:
A method of manufacturing a package structure is provided, including forming a first wiring layer on a carrier board, forming a plurality of first conductors on the first wiring layer, forming a first insulating layer that encapsulates the first wiring layer and the first conductors, forming a second wiring layer on the first insulating layer, forming a plurality of second conductors on the second wiring layer, forming a second insulating layer that encapsulates the second wiring layer and the second conductors, and forming at least an opening on the second insulating layer for at least one electronic component to be disposed therein. Since the first and second insulating layers are formed before the opening, there is no need of stacking or laminating a substrate that already has an opening, and the electronic component will not be laminated and make a displacement. Therefore, the package structure thus manufactured has a high yield rate. The present invention further provides the package structure.
Abstract:
A mounting structure for an electronic component and a method for mounting the electronic component are provided with a sufficient reinforcing effect for the relatively tall electronic component raised from a substrate. The mounting structure and the mounting method can easily respond to a change of the shape of the electronic component. In a mounting structure 1, a substrate 2 and an electronic component 4 raised on the substrate 2 are joined with bonding metal 3 and a reinforcing resin body 5 is bonded to the substrate 2 and the electronic component 4. The reinforcing resin body 5 includes a plurality of reinforcing resin layers 5a. The reinforcing resin layers 5a constituting the reinforcing resin body 5 are stacked in the height direction of the raised electronic component 4 along a side 4a of the electronic component 4 so as to be raised from the substrate 2.
Abstract:
A drive unit for driving a motor has a component assembly including a main circuit board having a component side and a solder side, one or more main circuit conductors formed in at least one layer of the main circuit board, a power component module including one or more power components, the power component module having electrical connection terminals for connecting the power component(s) to the one or more main circuit conductors of the main circuit board and a cooling plate coupled to the power component(s) in a manner enabling transfer of heat from the power component(s) to the cooling plate. The power component module is mounted to the component side of the main circuit board. The component assembly further includes a heat sink mounted on the cooling plate and a fan mounted on the heat sink.
Abstract:
An integrated circuit that includes a substrate having a shape memory material (SMM), the SMM is in a first deformed state and has a first crystallography structure and a first configuration, the SMM is able to be deformed from a first configuration to a second configuration, the SMM changes to a second crystallography structure and deforms back to the first configuration upon receiving energy, the SMM returns to the first crystallography structure upon receiving a different amount of energy; and an electronic component attached to substrate. In other forms, the SMM is in a first deformed state and has a first polymeric conformation and a first configuration, the SMM changes from a first polymeric conformation to a second polymeric conformation and be deformed from a first configuration to a second configuration, the SMM changes returns to the first polymeric conformation and deforms back to the first configuration upon receiving energy.
Abstract:
An integrated circuit that includes a substrate having a shape memory material (SMM), the SMM is in a first deformed state and has a first crystallography structure and a first configuration, the SMM is able to be deformed from a first configuration to a second configuration, the SMM changes to a second crystallography structure and deforms back to the first configuration upon receiving energy, the SMM returns to the first crystallography structure upon receiving a different amount of energy; and an electronic component attached to substrate. In other forms, the SMM is in a first deformed state and has a first polymeric conformation and a first configuration, the SMM changes from a first polymeric conformation to a second polymeric conformation and be deformed from a first configuration to a second configuration, the SMM changes returns to the first polymeric conformation and deforms back to the first configuration upon receiving energy.
Abstract:
An electronic part embedded substrate is disclosed. The electronic part embedded substrate includes a first substrate, a second substrate, an electronic part, an electrically connecting member, and a sealing member. A method of producing an electronic part embedded substrate is also disclosed. The method includes mounting an electronic part onto a first substrate, laminating a second substrate on the first substrate through an electrically connecting member; and filling a space between the first substrate and the second substrate with a sealing member to seal the electronic part.
Abstract:
A substrate board includes an electrical connection network on a face thereof. An integrated-circuit chip is mounted to the face of the substrate board in electrical contact with the electrical connection network. A local reinforcing or balancing layer made of a non-metallic material is mounted to the face of the substrate board in at least one local zone free of the face which is free of metal portions of the electrical connection network.