Abstract:
Printed circuit boards are provided with embedded components. The embedded components may be mounted within recesses in the surface of a printed circuit board substrate. The printed circuit board substrate may have grooves and buried channels in which wires may be mounted. Recesses may be provided with solder pads to which the wires may be soldered or attached with conductive adhesive. An integrated switch may be provided in an opening within a printed circuit board substrate. The integrated switch may have a dome switch member that is mounted within the opening. A cover member for the switch may be formed from a flexible layer that covers the dome switch member. Terminals for the integrated switch may be formed from conductive structures in an interior printed circuit board layer. Interconnects may be used to electrically connect embedded components such as switches, integrated circuits, solder pads for wires, and other devices.
Abstract:
Communications connectors include a housing and a printed circuit board that is at least partially mounted in the housing that has a plurality of conductive paths that are arranged in pairs to form a plurality of differential transmission lines. These connectors further include a plurality of contacts, each of which is electrically connected to a respective one of the conductive paths of the printed circuit board. The printed circuit board further includes at least a first floating image plane that is located between a top surface and a bottom surface thereof, the floating image plane being electrically isolated from the plurality of conductive paths.
Abstract:
The described embodiment relates generally to the field of inductive bonding. More specifically an inductive heater designed for use in assembling electronics is disclosed. A number of methods for shaping a magnetic field are disclosed for the purpose of completing an inductive bonding process without causing harm to unshielded adjacent electrical components.
Abstract:
An electrical coaxial connector comprising a signal contact member having a connecting terminal portion and a resilient engaging portion, a grounding contact member having an annular engaging portion for engaging with a mating connector fixed on a circuit board and a shell portion extending from the annular engaging portion, and a housing for supporting the signal contact member and the grounding contact member, wherein the resilient engaging portion is positioned at the inside of the annular engaging portion, the connecting terminal portion is put in electrical connection with a core conductor of a coaxial cable at the outside of the annular engaging portion, and the resilient engaging portion extends from the connecting terminal portion through the mating connector to engage with a signal terminal provided on the circuit board to which the mating connector is fixed.
Abstract:
Lighting devices for a vehicle arc disclosed that can include a light emitting diode and control circuitry for the light emitting diode. Also disclosed are circuits for a light emitting diode. Additionally, a method of forming a lighting device is disclosed. The lighting device, circuits, and method can be used, for example, to illuminate the interior of a vehicle.
Abstract:
An electrical connector assembly is provided with an insulating housing, a PCB, and an FFC. The insulating housing includes a plurality of terminals. The FFC and the terminals are electrically connected together by the PCB. The PCB is vertically secured to a rear end of the insulating housing. A plurality of contacts of the PCB are provided on a rear surface of the PCB.
Abstract:
The embodiments relates generally to the use of conductive connections for electrically grounding a series of conductive substrates. More specifically the embodiments teach configurations of conductive connections that do not overly constrain relative motion between the connected conductive substrates. Conductive pressure sensitive adhesive is used to attach opposing ends of the conductive connectors to the conductive substrates. A substrate portion of the conductive connectors is scored by a cutting device such as a die cutter to reduce rigidity of the substrate portion.
Abstract:
A cable bypass assembly is disclosed for use in providing a high speed transmission line for connecting a board mounted connector of an electronic device to a chip on the device board. The bypass cable assembly has a structure that permits it, where it is terminated to the board mounted connector and the chip member, or closely proximate thereto to replicate closely the geometry of the cable. The connector terminals are arranged in alignment with the cable signal conductors and shield extensions are provided so that shielding can be provided up to and over the termination between the cable signal conductors and the board connector terminal tails. Likewise, a similar termination structure is provided at the opposite end of the cable where a pair of terminals are supported by a second connector body and enclosed in a shield collar. The shield collar has an extension that engages the second end of the cable.
Abstract:
A circuit board having antenna structure for use with portable communication devices includes a substrate and an antenna body provided on the substrate. The substrate has a first, a second and a third surface that adjoin one another, and has a ground metallic element mounted thereon parallel to the third surface. The antenna body includes a radiation portion located on the first and second surfaces, a feed-in portion located on the third surface and connected to the radiation portion, and a ground portion located on the third surface and connected to the radiation portion and the ground metallic element. With these arrangements, the antenna structure provided on the circuit board overcomes the problems of limited antenna position and insufficient antenna area without being hindered by other electronic components or structural elements on the circuit board, and is operable at both higher and lower frequency bands.
Abstract:
Disclosed is a flexible circuit cable with at least two bundled wire groups. The circuit cable has first and second ends respectively connected to first and second connection sections. The circuit cable includes a cluster section, which is formed of a plurality of cluster wires formed by slitting the circuit cable, in an extension direction of the cable, at a predetermined cut width. The cluster section includes at least two independent bundles, which are formed by dividing the cluster wires of the circuit cable into different signal groups according to electrical signals transmitted therethrough. Bundling members are used to the cluster wires of the independent bundles according to predetermined bundling modes. Further, the circuit cable has a surface forming a shielding conductive layer for electromagnetic interference protection and impedance control for internal signals of the circuit cable.