Abstract:
An electronic device includes: a printed circuit board; a conductive casing; and a connecting part. The printed circuit board is mounted with an electronic component to configure a predetermined electronic circuit. The conductive casing stores the printed circuit board. The connecting part is arranged between the conductive casing and the printed circuit board, and is configured to be capacitively coupled with a conductor pattern of the printed circuit board so as to guide radiation noise from the printed circuit board to the conductive casing.
Abstract:
A circuit board includes a first insulating layer having an upper surface on which mounting regions of electronic components and wiring patterns are provided, a metal core provided on the lower surface of the first insulating layer, in such a way as to vertically overlap with the mounting regions, and a second insulating layer provided on the lower surface of the first insulating layer, around the metal core. The lower surface of the metal core is exposed from the second insulating layer, the thermal conductivities of the first insulating layer and the metal core are higher than the thermal conductivity of the second insulating layer, and the hardness of the first insulating layer is higher than the hardness of the second insulating layer. Through holes that penetrate the insulating layers and that connect wiring patterns of the insulating layers are provided.
Abstract:
An electronic device module includes a wiring board having a first surface including first and second electrodes formed thereon and a second surface opposite to the first surface, a supporting member attached to the second surface of the wiring board, a first electronic unit mounted on the first surface of the wiring board and electrically connected to the first electrode, and a second electronic unit mounted on the first surface of the wiring board and electrically connected to the second electrode. The wiring board includes a wiring extending from the first electronic unit to a position closer to the second electronic unit, and a reinforcement layer disposed between the first and second electronic units and apart from the wiring in a thickness direction of the wiring board.
Abstract:
A method of manufacture of an enhanced capacity memory system includes: providing a dual in-line memory module carrier having a memory module and an integrated memory buffer coupled to the memory module; coupling a memory expansion board, having a supplementary memory module, to the dual in-line memory module carrier including attaching a bridge transposer; and providing a system interface connector coupled to the integrated memory buffer and the bridge transposer for controlling the memory module, the supplementary memory module, or a combination thereof.
Abstract:
A circuit board includes a plate member capable of holding a printed circuit board, the printed circuit board including an electronic component, and a cooling member provided on the electronic component, the printed circuit board and the electronic component being positioned between the plate member and the cooling member; and a circuit provided to the plate member and allowed to be electrically connected with the printed circuit board.
Abstract:
A substrate reinforcing structure for preventing and suppressing deformation or the like of a substrate with a fixed electric component socket.A first reinforcing plate in, for example, a frame shape is attached to a back surface of a wiring board. Further, a second reinforcing plate in, for example, a flat shape is provided on a back side of the first reinforcing plate. In a preferred embodiment of the present invention, a first insulating sheet is further provided between the wiring board and the first reinforcing plate, and a spacer is provided on the second reinforcing plate and abutted to a part of the wiring board where contact pins do not protrude. A second insulating sheet is further provided on the second reinforcing plate.
Abstract:
There is provided a security module for protecting circuit components from unauthorized access. The security module comprises a base printed circuit board, base PCB, for supporting circuit components to be protected, a frame printed circuit board, frame PCB, where the frame PCB is secured on top of the base PCB and defining a protective space for circuit components supported by the base PCB, and a lid printed circuit board, lid PCB, which is secured on top of the frame PCB, thereby providing a top closure to the protective space. First and third meshes are provided in the frame PCB, and a second mesh is provided in the lid PCB. The first, second and third meshes have a number of electrically conductive tracks, and one or more tamper detection paths are formed comprising a serial connection of one track from each of the first, second and third meshes. The security module may further comprise security circuitry arranged on the base PCB within the protective space, and for each tamper detection path the security circuitry has a pair of electrical signal input/outputs being electrically connected to the tamper detection path.
Abstract:
Provided is a coupling assembly of a power semiconductor device and a printed circuit board (PCB). The coupling assembly of the power semiconductor device and the printed circuit board (PCB) includes a PCB, a power semiconductor device comprising a plurality of legs electrically connected to a circuit pattern disposed on the PCB, a connection member disposed above the power semiconductor device, the connection member being formed of an electrically conductive material, a main fixing unit fixing the power semiconductor device to the PCB, and a housing disposed outside the PCB. Thus, a coupling force between the power semiconductor device and the PCB and electric efficiency may be improved to a heat generation amount. In addition, heat may be more quickly dissipated through the connection member to improve a cooling effect.
Abstract:
An electrical device and electrical compressor. The electrical device (102) comprises an electrical circuit (104) comprising a metal substrate (202), a layer of dielectric material (206) extending over the metal substrate (202), and a metal strip (208) extending over the layer of dielectric material (206). It further comprises a linking conductive part (218) intended to be connected to an electrical ground (106) and having a first contact end (220) intended to be pressed against the metal strip (208), and a pushing device (224) intended to take a first position, called the closed position, in which the pushing device (224) presses against a support portion (226) of the linking conductive part (218) so as to press the first contact end (220) against the metal strip (208), the support portion (226) being located away from the first contact end (220), and a second position, called the open position, in which the pushing device (224) allows the first contact end (220) to be separated from the metal strip (208).
Abstract:
A first substantially annular conductive material has a first central opening, the first central opening is sufficient to substantially surround a fastener and maintain an electrical connection between the printed circuit board and the chassis. A second substantially annular conductive material is concentric with the first conductive material and the second conductive material hays a second central opening which is sufficient to substantially surround the fastener and maintain the electric connection between the printed circuit board and the chassis. A substantially annular impedance material is between and adjacent to the first conductive material and the second conductive material, the impedance material is sufficient to attenuate the electromagnetic interference from the system.