Abstract:
A noise filter includes a capacitor having a hot side input terminal, a hot side output terminal, a ground side input terminal, and a ground side output terminal. A circuit board includes a hot side input electrode connected to the hot side input terminal, a hot side output electrode connected to the hot side output terminal, a ground side input electrode connected to the ground side input terminal, and a ground side output electrode connected to the ground side output terminal. The impedance of the ground side input terminal seen from the ground side output electrode is larger than both the impedance of the ground side output terminal seen from the ground side output electrode and the impedance of the hot side output terminal seen from the ground side output electrode. For this purpose, a stray capacitance formed between the ground side input electrode and the ground side output electrode is reduced by increasing a gap therebetween. Accordingly, excellent noise-reducing characteristics are provided.
Abstract:
A circuit board suitable for being electrically connected to a chip package is provided. The chip package has a chip pad and a plurality of inner leads. The circuit board includes at least one patterned conductive layer and at least one insulating layer. The patterned conductive layer has at least one first pad and at least one second pad. The first pad has an extension part and is suitable for being electrically connected to the chip pad. The second pad is suitable for being electrically connected to one end of at least one of the inner leads, while the other end of the inner lead suitable for being electrically connected to the second pad has a projection at least partially overlapping the extension part on the patterned conductive layer. Moreover, the patterned conductive layer is disposed outside the insulating layer.
Abstract:
A method of packaging a semiconductor component with a printed wiring board is disclosed. The method includes determining a first distance, applying a thin film onto a surface of the semiconductor component such that the thin film is spaced apart from a support of the semiconductor, applying a solder pad onto the printed wiring board, placing the semiconductor component with the thin film onto the printed wiring board, and positioning the thin film adjacent the solder pad.
Abstract:
A circuit device includes a metal substrate; and a plurality of circuit elements, mounted on the metal substrate, which electrically connects to the metal substrate. The metal substrate is made of a copper plate of high thermal conductivity. The metal substrate is demarcated into a plurality of sections by insulating films added with a filler for enhancing the thermal conductivity in resin. The circuit elements, which have respective independent operating potentials on a side of the metal substrate of the circuit elements, are respectively provided on separated copper plates.
Abstract:
An RF electronic component for mounting on a substrate includes a housing; and at least one electronic device having an input and/or output incorporated in the housing. At least one input/output terminal connects to a connection pad on the substrate; and an electrical transition provides an electrical connection between the input/output terminal and an input/output of an electronic device incorporated in the electronic component. The electrical transition comprises a side termination at least partially located on an outer surface of the housing; and an array of conductive through holes formed inside the housing at an offset from the side termination. The array is arranged so that the axes of the through holes are substantially mutually parallel and coplanar, and the array of through holes is connected to form a ground plane at the offset from the side termination.
Abstract:
In a hybrid integrated circuit device that is a circuit device of the present invention, a conductive pattern including pads is formed on a surface of a substrate. A first pad is formed to be relatively large since a heat sink is mounted thereon. A second pad is a small pad to which a chip component or a small signal transistor is fixed. In the present invention, a plated film made of nickel is formed on a surface of the first pad. Therefore, the first pad and a solder never come into contact with each other. Thus, a Cu/Sn alloy layer having poor soldering properties is not generated but a Ni/Sn alloy layer having excellent soldering properties is generated. Consequently, occurrence of sink in the melted solder is suppressed.
Abstract:
An electrical connector (100) adapted for being assembled in a notch (4) of a Printed Circuit Board (PCB) (200) comprises a dielectric housing (1) defining passageways (12) thereon, a plurality of contacts (2) received in corresponding passageways, and a retaining device (31) retaining the electrical connector to the PCB. Each contact comprises a soldering section (22) extending out the dielectric housing and retained on the PCB. The retaining device has a same thickness W to that of each soldering section of the contact.
Abstract:
A method of reducing a likelihood that a die pad will be delaminated from a die in an integrated circuit die package for a structure design during an attachment of a heat sink member to the die pad using solder, is provided. A sample structure of the structure design is evaluated to determine whether a volume of last solidification for the solder is centrally located with respect to the die pad and is located at or near an interface of the solder and the die pad. If the last solidification volume is centrally located and is located at or near the interface of the solder and the die pad, and if the die pad is delaminated from the die, the structure design is modified so that less metal of the heat sink member is centrally located than before the modifying.
Abstract:
A method for assembling an electrical circuit apparatus that includes; a substrate having a top side, a ground layer, at least one thermal aperture, and at least one solder aperture; a heat sink; and an adhesive layer for mechanically coupling the heat sink to the ground layer of the substrate, the adhesive layer having at least one aperture wherein aligning the at least one substrate solder aperture with the at least one adhesive layer aperture enables solder wetting in a predetermined area between the heat sink and the ground layer of the substrate.
Abstract:
An electrical connector (100) adapted for being assembled in a notch (4) of a Printed Circuit Board (PCB) (200) comprises a dielectric housing (1) defining passageways (12) thereon, a plurality of contacts (2) received in corresponding passageways, and a retaining device (31) retaining the electrical connector to the PCB. Each contact comprises a soldering section (22) extending out the dielectric housing and retained on the PCB. The retaining device has a same thickness W to that of each soldering section of the contact.