Abstract:
An ultraviolet light-generating target comprising a substrate transmitting ultraviolet light; and a light-emitting layer provided on the substrate and emitting ultraviolet light in response to an electron beam, wherein the light-emitting layer is an amorphous layer formed of Al2O3 doped with Sc.
Abstract:
A carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. Each of the two strip-shaped arms includes a plurality of carbon nanotubes parallel to the surface of the insulating substrate.
Abstract:
An ultraviolet light generating target 20 includes a substrate 21 made of sapphire, quartz, or rock crystal; and a light-emitting layer 22 that is provided on the substrate 21 and that generates ultraviolet light upon receiving an electron beam. The light-emitting layer 22 includes powdered or granular Pr:LuAG crystals. By using such a light-emitting layer 22 as the target, the ultraviolet light generating efficiency can be increased more remarkably than when a Pr:LuAG single crystal film is used.
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer disposed on the substrate and generating ultraviolet light UV in response to an electron beam. The light-emitting layer includes a powdery or granular rare-earth-containing aluminum garnet crystal doped with an activator. The light-emitting layer has an ultraviolet light emission peak wavelength of 300 nm or shorter.
Abstract:
A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode.
Abstract:
A method for raising luminous efficiency of field emissive luminescent material, a luminescent glass element and the preparing method thereof are provided. The method for raising luminous efficiency of field emissive luminescent material comprises: forming a nonperiodic metal film having metal micro-nano structure on the surface of a luminescent glass body having a composition of aM2O.bY2O3.cSiO2.dTb2O3; eradiating cathode ray to the metal film, and the cathode ray penetrating the metal film to make the glass body to luminesce. The luminescent glass element has a luminescent glass body, and a nonperiodic metal film having metal micro-nano structure forming on the glass body. The preparing method of the element comprises: preparing a luminescent glass body, forming a metal film on the surface of the luminescent glass body, annealing and cooling to obtain the luminescent glass element. The luminescent glass element in the invention has good transmissivity, high homogenization and luminous efficiency, good stability and simple structure. The preparing method thereof is simple and has a low cost.
Abstract translation:提供了一种提高场致发光材料的发光效率的方法,发光玻璃元件及其制备方法。 用于提高场致发光发光材料的发光效率的方法包括:在具有M 2 O·b Y 2 O 3·c SiO 2·d·Tb 2 O 3组成的发光玻璃体的表面上形成具有金属微纳米结构的非周期性金属膜; 将阴极射线溅射到金属膜,阴极射入金属膜,使玻璃体发光。 发光玻璃元件具有发光玻璃体,在玻璃体上形成具有金属微纳米结构的非周期性金属膜。 该元件的制备方法包括:制备发光玻璃体,在发光玻璃体的表面上形成金属膜,进行退火和冷却以获得发光玻璃元件。 本发明的发光玻璃元件具有良好的透射率,高均匀性和发光效率,稳定性好,结构简单。 其制备方法简单,成本低。
Abstract:
An electron emission element (1) includes an electrode substrate (2) and a thin film electrode (3), and emits electrons from the thin film electrode (3) by voltage application across the electrode substrate (2) and the thin film electrode (3). An electron accelerating layer (4) containing at least insulating fine particles (5) is provided between the electrode substrate (2) and the thin film electrode (3). The electrode substrate (2) has a convexoconcave surface. The thin film electrode (3) has openings (6) above convex parts of the electrode substrate (2).
Abstract:
A field emission flat light source and a manufacturing method thereof are provided. The field emission flat light source includes an anode (110), a cathode (120), a light guide plate (130) and a separation body (140). The anode (110) and the light guide plate (130) are separated by the separation body (140). The cathode (120) is provided in the contained space (150) formed by the anode (110), the light guide plate (130) and the separation body (140). The anode (110) includes an anode substrate (112), a metal reflective layer (114) provided on the anode substrate (112) and a light emitting layer (116) provided on the metal reflective layer (114). The cathode (120) includes a cathode substrate (122) and an electron emitter (124) provided on the surface of the cathode substrate (122). The thermal conductivity of the field emission flat light source is improved. The field emission flat light source is applied to the field of the liquid crystal display or the illumination light.
Abstract:
A field emission lamp, capable of increasing the number of electron emitting points thereof, and of increasing the uniformity and the intensity of the light output therefrom by installing a mesh cathode is disclosed. The field emission lamp comprises: an outer shell having an inner surface, a mesh cathode unit surrounded by the outer shell, an anode unit formed on a portion of the inner surface of the outer shell, and a phosphor layer formed on a portion of the anode unit. Wherein, the light generated by the phosphor layer, due to the bombardment of the electrons, can output from the field emission lamp of the present invention, through the outer shell where none of the anode unit is formed thereon.