Abstract:
A method of imaging a sample having birefringent crystals (or other materials) using a lens-free polarized microscopy device includes illuminating the sample contained on a sample holder with circularly polarized partially coherent or coherent light and capturing lower resolution holographic images of the birefringent crystals with an image sensor. A polarization analyzer unit made from a λ/4 retarder and a linear polarizer is positioned between the sample holder and the image sensor. The lower resolution holographic images are obtained with the polarization analyzer unit in two different orientations (e.g. ˜90° orientations). Phase-retrieved, higher resolution images of the birefringent crystals at the different orientations are obtained using the lower resolution holographic images. A differential image is generated from the respective phase-retrieved, higher resolution images. An object support mask is applied to identify the birefringent crystals which can then be pseudo-colored.
Abstract:
A system for measuring chlorophyll concentration in a leaf sample includes a leaf-holding illuminator device with a main body containing a power source, a plurality of switchable light sources emitting light at different spectra (e.g., red and white light from a broadband light source), and a cap detachably secured to the main body using one or more fastening means. The leaf sample is interposed between the main body and the cap and held in place during imaging. The system includes a mobile electronic device having a camera configured to capture an image of the leaf illuminated by the plurality of switchable light sources, the mobile electronic device having wireless connectivity to a network and an application contained therein configured to transfer the images to a remote sever or computer via the network for data processing. A final chlorophyll index value is calculated based on the transferred images.
Abstract:
An optical readout method for detecting a precipitate (e.g., a precipitate generated from the LAMP reaction) contained within a droplet includes generating a plurality of droplets, at least some which have a precipitate contained therein. The droplets are imaged using a brightfield imaging device. The image is subject to image processing using image processing software executed on a computing device. Image processing isolates individual droplets in the image and performs feature detection within the isolated droplets. Keypoints and information related thereto are extracted from the detected features within the isolated droplets. The keypoints are subject to a clustering operation to generate a plurality of visual “words.” The word frequency obtained for each droplet is input into a trained machine learning droplet classifier, wherein the trained machine learning droplet classifier classifies each droplet as positive for the precipitate or negative for the precipitate.
Abstract:
A micro-plate reader for use with a portable electronic device having a camera includes an opto-mechanical attachment configured to attach/detach to the portable electronic device and includes an array of illumination sources. A slot in the opto-mechanical attachment is dimensioned to receive an optically transparent plate containing an array of wells. Optical fibers are located in the opto-mechanical attachment and transmit light from each well to a reduced size header having, wherein the fiber array in the header has a cross-sectional area that is ≤10× the cross-sectional area of the wells in the plate. A lens located in the opto-mechanical attachment transmits light from the header fibers to the camera. Software executed on the portable electronic device or other computer is used to process the images to generate qualitative clinical determinations and/or quantitative index values for the separate wells.
Abstract:
A method for lens-free imaging of a sample or objects within the sample uses multi-height iterative phase retrieval and rotational field transformations to perform wide FOV imaging of pathology samples with clinically comparable image quality to a benchtop lens-based microscope. The solution of the transport-of-intensity (TIE) equation is used as an initial guess in the phase recovery process to speed the image recovery process. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for any focus adjustment, and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. In an alternative embodiment, a synthetic aperture approach is used with multi-angle iterative phase retrieval to perform wide FOV imaging of pathology samples and increase the effective numerical aperture of the image.
Abstract:
A device and method for imaging fluorescently labeled molecules (e.g., nucleic acids) includes securing a modular attachment device to the mobile phone with a sample containing stretched, fluorescently labeled nucleic acid molecules and illuminating the sample with excitation light to cause the fluorescently labeled nucleic acid molecules to emit fluorescent light. Images of the nucleic acids are captured using a camera of the mobile phone. The images from the mobile phone are transferred to a remote computer for image processing and analysis. The images are processed by the remote computer to generate analysis data of sample, wherein the analysis data includes the length of nucleic acid molecules contained in the sample or the length of molecular sub-region(s). The mobile phone or another computing device receives from the remote computer the analysis data and displays at least some of the analysis data thereon.
Abstract:
A scanning system for fluorescent imaging includes a sample holder configured to hold a sample therein, the sample holder defining a sample holding region. A scanner head spans the sample holding region and is movable relative to the sample holder. An array of light sources is disposed on an opposing side of the sample holder and is angled relative thereto. Respective controller are operably coupled to the scanner head and the array of light sources, wherein one controller selectively actuates a one or more rows of the array of light sources and another controller controls movement of the scanner head to capture fluorescent light emitted from within the sample holder in response to illumination from the actuated light sources. A filter designed to filter out scattered light from the sample may be interposed between the sample holder and the scanner head.
Abstract:
A field-portable fluorescence imaging platform is disclosed that is installed on mobile communications device for imaging of individual nanoparticles or microparticles such as viruses, bacterial, and the like using a light-weight and compact opto-mechanical attachment or housing configured to be removably secured to the mobile communication device. The housing includes a sample holder configured to hold a sample along with a light source and a lens or lens system that is positioned generally opposite the lens in the mobile communication device. An optical filter is disposed in the housing and is interposed between the lens of the housing and the lens of the mobile communication device. A z-adjust stage is disposed in the housing and coupled to the sample holder, the z-adjust stage is configured to adjust the position of the sample holder in a z direction along an optical path passing through the lenses and onto an image sensor contained in the mobile communication device.
Abstract:
Wide-field fluorescent imaging on a mobile device having a camera is accomplished with a compact, light-weight and inexpensive optical components that are mechanically secured to the mobile device in a removable housing. Battery powered light-emitting diodes (LEDs) contained in the housing pump the sample of interest from the side using butt-coupling, where the pump light is guided within the sample holder to uniformly excite the specimen. The fluorescent emission from the sample is then imaged using an additional lens that is positioned adjacent to the existing lens of the mobile device. A color filter is sufficient to create the dark-field background required for fluorescent imaging, without the need for expensive thin-film interference filters.
Abstract:
An allergy testing system for use with a mobile electronic device having a camera includes a housing that can be attached to the mobile electronic device. First and second light sources within the housing are configured to illuminate, respectively, a test sample and a control sample. A colorimetric assay is performed on the test sample and the control sample. The first light source and the second light source are activated and the camera of the mobile electronic device captures images of transmitted light. The relative intensity of transmitted light is then used by software loaded on the mobile electronic device to determine a relative absorbance value. The relative absorbance value is used, together with a calibration curve, to measure the concentration of a particular allergen within the test sample. Based on the concentration of the allergen the test sample can be labeled as either “positive” or “negative.”