Abstract:
A composite sheet material and method for forming the same is provided that includes a substrate, a matrix, and a cover sheet. The substrate has a first face surface, a second face surface, and a plurality of edges, and includes a thermoplastic material. The matrix is attached to the substrate. The matrix includes a support component having a first melting point, and a thermoplastic component having a second melting point. The second melting point is less than the first melting point. The cover sheet imparts one or more surface characteristics to the composite sheet material during thermo-pressure formation of the composite sheet material.
Abstract:
Provided are a gas barrier film which has extremely excellent gas barrier performance and high durability, a manufacturing method thereof, and an electronic device using the same. The gas barrier film having at least two gas barrier layers which contain at least Si, O and N and are laminated on a substrate, in which the total thicknesswise composition distribution of the gas barrier layers includes both a thicknesswise continuous region which has a thickness of 20 nm or more and satisfies the following composition range (A) and a thicknesswise continuous region which has a thickness of 50 nm or more and satisfies the following composition range (B) in this order from the substrate side. (A): when the composition of the gas barrier layer is represented by SiOwNx, w≧0.8, x≧0.3, and 2w+3x≦4, and (B): when the composition of the gas barrier layer is represented by SiOyNz, 0
Abstract translation:本发明提供阻气性优异,耐久性高的阻气膜及其制造方法以及使用该阻气膜的电子装置。 所述阻气膜具有至少两个至少含有Si,O和N并且层压在基板上的气体阻隔层,其中阻气层的总厚度组成分布包括厚度方向连续区域 20nm以上,满足以下组成范围(A)和厚度为50nm以上的厚度连续区域,从基板侧依次满足以下组成范围(B)。 (A):当阻气层的组成由SiO wNx,w≥0.8,x≥0.3,以及2w + 3x≦̸ 4和(B)表示时:当阻气层的组成由SiO y N z表示时, 0
Abstract:
An exemplary embodiment provides coated polymeric substrates that have a polymeric substrate body with a coated surface. The surface coating includes more than one pair of coating layers. Each pair of coating layers includes a first applied coating layer and a second applied coating layer. In addition, an indicator, applied on top of or between coating layers, provides an indication of wear of the coating. The first and second applied coating layers have a thickness between about 3 to about 10 nanometers. The coating exhibits a Hall-Petch effect.
Abstract:
Provided herein are processes for depositing a plasma coating on a substrate and coated substrates obtained thereby. More particularly, processes for characterizing a plasma coating on a substrate are provided. The process for depositing a plasma coating includes the step of exposing the substrate to a plasma. The plasma includes at least one coating precursor and one fluorophore other than the coating precursor.
Abstract:
The invention provides a decorative sheet including at least a surface protective layer on a substrate, in which the surface protective layer includes a cured material of an ionizing radiation curable resin composition at least containing a polycarbonate(meth)acrylate (A) and a multi-functional (meth)acrylate (B) in a mass ratio (A)/(B) of (98/2)-(70/30). The invention also provides a decorative sheet including at least a surface protective layer on a substrate, in which the surface protective layer includes a cured material of an ionizing radiation curable resin composition at least containing an acrylic silicone (meth)acrylate (C) and a multi-functional (meth)acrylate (B) in a mass ratio (C)/(B) of (50/50)-(95/5). The present invention provides a decorative sheet with a surface protective layer having scratch resistance as well as three-dimensional formability.
Abstract:
A first coating rod placed on an upper-surface side of a resin film is pressed onto the resin film in a state where the first coating rod is circumscribed and supported by support members each comprising a pair of rollers and spaced with intervals therebetween in a length direction of the first coating rod so that the first coating rod is rotated in a forward direction at a speed substantially equal to that of the resin film, and a lower surface of the resin film is supported by a guide roll or a second coating rod placed on a downstream side of the first coating rod and an upstream side of a tenter so that the coating liquid continuously measured and supplied to an upper surface of the resin film is smoothened by the first coating rod.
Abstract:
The present invention provides: a method of manufacturing a gas barrier film, which is manufactured at high productivity, and has extremely high gas barrier performance and stability thereof with time, excellent surface smoothness and bending resistance, and high durability; a gas barrier film obtained using the method; and an organic photoelectric conversion element using the gas barrier film. In the method, after forming a coated layer by applying a coating liquid containing polysilazane to a substrate, a gas barrier layer is formed by applying vacuum ultraviolet light to the coated layer surface thus formed. The method is characterized in that the coated layer is irradiated with the vacuum ultraviolet light, while drying the solvent in the e coated layer.
Abstract:
A laminate film including a first core polylactic acid layer, a coating receiving-layer of polylactic acid, and coated on one side of the coating receiving-layer with PVOH, EVOH, a blend of crosslinked EVOH/PVOH, vinyl alcohol-vinylamine (PVAm) copolymer, anionic carboxylated styrene-butadiene copolymer (SBR) emulsion, or blends thereof. This coating may be applied after the machine-direction orientation step and dried and oriented in a transverse direction orientation oven if in-line coating is desired; or applied to the film in an off-line coating method and dried in an air flotation oven. The dried coating layer can be metallized. This laminate film exhibits excellent gas and moisture barrier properties, appearance, and metal adhesion. It may also optionally include a heat sealable or winding improving layer on the side opposite the coating receiving-layer of the core layer.
Abstract:
Method of forming a very hydrophobic, extremely hydrophobic or superhydrophobic surface comprising depositing a composition comprising hydrophobic microparticles, hydrophobic nanoparticles, or a mixture thereof and a binder in sufficient quantity to provide a hydrophobic or a superhydrophobic surface on a substrate having a micropatterned surface having raised portions, recessed portions or a combination thereof.
Abstract:
A duplex coating scheme and associated method of formation, which includes a siloxane based soft coating and a plasma based SiOxCy hard coating used in combination to improve the durability of acrylic substrates used in aircraft window applications.