Abstract:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.
Abstract:
A low-loss optical fiber over wide wavelength range includes a transmission loss of less than or equal to 40 dB/km in a whole wavelength range of 400-1400 nm, and being manufactured by drawing an optical fiber preform including a core composed of a silica glass having a hydroxyl-group concentration of less than or equal to 1 ppm and a cladding composed of a silica glass having a fluorine concentration of more than or equal to 3.2 wt %.
Abstract:
The invention relates to a method allowing cost-effective production of doped quartz glass, particularly laser-active quartz glass, that is improved with regard to the homogeneity of the doping material distribution, in that a suspension is provided comprising SiO2 particles and an initial compound for at least one doping material in an aqueous fluid, the fluid being removed under formation of a doped intermediate product comprising particles of the doping material or particles of the precursor substance or the doping material, and the doped quartz glass is formed by sintering the doped intermediate product, wherein at least part of the particles of the doping material or the particles of the precursor substance of the same is generated in the suspension as a precipitate of a pH-value-controlled precipitation reaction of the initial compound.
Abstract:
An optically active glass and an optical fiber comprising such glass, having reduced photodarkening properties are provided. The optically active glass is mainly composed of silica representing from about 50 to 98 mol % of the glass. It also includes at least one active ion, such as a rear-earth ion, which induces a photodarkening effect in optical properties of the glass. Moreover, the glass includes an effective amount of phosphorus oxide providing the photodarkening reducing effect, preferably in an amount of from about 1 to 30 mol %. A method for reducing a photodarkening effect in optical properties of an optically active glass including the step of introducing phosphorus oxide to the glass is also provided.
Abstract:
According to some embodiments, the optical fiber comprises: (i) a core having a first index of refraction n1; (ii) a cladding surrounding the core and having a second index of refraction n2, such that n1>n2, wherein cladding has at two sets of stress rods extending longitudinally through the length of the optical fiber, wherein the two sets of stress rods have CTE coefficients and/or softening points different from one another and different from that of cladding.
Abstract:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
Abstract:
To provide an optical component of quartz glass for use in a projection objective for immersion lithography at an operating wavelength below 250 nm, which component is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should contain hydroxyl groups in the range of from 1 wtppm to 60 wtppm and chemically bound nitrogen, and that the mean hydrogen content of the quartz glass should be in the range of 5×1015 molecules/cm to 1×1017 molecules/cm3.
Abstract translation:为了提供石英玻璃的光学部件,用于在250nm以下的工作波长下用于浸没式光刻的投影物镜,该成分被优化用于线偏振UV激光辐射,特别是关于由各向异性密度变化引起的压实和双折射 根据本发明,建议石英玻璃应含有1〜60重量ppm的羟基和化学键合的氮,石英玻璃的平均氢含量应在5×1015的范围内 分子/ cm至1×1017分子/ cm 3。
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
The glass fiber for an optical amplifier has a matrix glass core, a first glass cladding, and a second glass cladding. The matrix glass core has a composition, in mol %, of Bi2O3, 30-60; SiO2, 0.5-40; B2O3, 0.5-40; Al2O3, 0-30; Ga2O3, 0-20; Ge2O3, 0-25 ; La2O3, 0-15; Nb2O5, 0-10; SnO2, 0-30; alkali metal oxides, 0-40; and Er2O3, 0.05-8. The glass claddings have the same composition as the core, except that a transition metal compound is included as an absorbent. The refraction index of the matrix glass is > about 1.85, the refraction index of the first glass cladding is less than that of the core, and the refraction index of the second glass cladding is higher than that of the first.
Abstract:
The invention relates to a multimode optical fibre having a refractive index profile, comprising a light-guiding core surrounded by one or more cladding layers. The present invention furthermore relates to an optical communication system comprising a transmitter, a receiver and a multimode optical fibre.