Abstract:
A switchable rocker arm for valve deactivation is provided for a valve train of an internal combustion engine. The switchable rocker arm includes a cam lever assembly, a valve lever assembly, and a hydraulically actuated coupling assembly that is radially arranged between the cam lever and valve lever assemblies. The coupling assembly includes a shuttle pin, a locking pin with a round or flat locking interface, and optional shuttle pin and locking pin sleeves. In a first, locked position, the rotational motion of a camshaft is translated to linear motion of an engine valve. In a second, unlocked position, the cam lever assembly rotates about the valve lever assembly, facilitating valve deactivation. A pivot joint arranged between the cam lever and valve lever assemblies facilitates an arcuate lost motion of the cam lever assembly. An integrated arrangement for one or more lost motions springs offers packaging and functional advantages.
Abstract:
A cam follower for operable attachment to a valve lifter assembly for use with a variable cam lobe camshaft in a variable valve timing system includes a housing with a central cavity and a mushroom head with a stem pivotably connected to the housing in the central cavity, the mushroom head having a radiused surface for contacting a cam lobe surface. The cam follower is used in combination with a variable cam surface of an axially displaceable camshaft to obtain improvements in idling speed and volumetric efficiency.
Abstract:
A cam follower for a rocker arm includes a cylindrical outer ring (11) having an outer circumference surface abutting on a cam, a support shaft (6) to support the outer ring (11), a plurality of rollers (12) arranged in an annular region between the support shaft (6) and the outer ring (11), and a side plate (16) composed of a ring-shaped disk penetrated by the support shaft (6), opposed to an end face (15) of the roller (12), and having an outer diameter Ds smaller than an inner diameter Dr of the outer ring (11). The side plate (16) is arranged at each end of the roller (12), and a relationship Lr
Abstract:
A variable valve timing system includes an exhaust swing arm swung in accordance with rotation of a camshaft, an intake swing arm similarly swung in accordance with the rotation of the camshaft, and a swing shaft swingably supporting the exhaust swing arm and the intake swing arm. In an engine including a plurality of the variable valve timing systems, the adjacent swing shafts are coupled to each other. The engine includes a link mechanism connected to one of the swing shafts, and an actuator for moving the link mechanism. The actuator controls turning angles of all the swing shafts via the link mechanism.
Abstract:
A combined rocker arm apparatus for actuating auxiliary valve of engine, comprises an auxiliary actuator, a main rocker arm and a secondary rocker arm. The auxiliary actuator comprises an auxiliary rocker arm and an auxiliary cam. The auxiliary rocker arm and the main rocker arm are mounted on the rocker arm shaft in parallel. The auxiliary rocker arm is connected to the auxiliary cam at one end and adjacent to the secondary rocker arm at the other end. The auxiliary rocker arm includes a drive mechanism which provided with a piston. In the non-operation mode of the drive mechanism, the piston is drawn back, then the auxiliary rocker arm is disconnected with the secondary rocker arm; in the operation mode of the drive mechanism, the piston is pushed out, then the auxiliary rocker arm is connected with the secondary rocker arm.
Abstract:
A computer-implemented method can include receiving a contact point path between a rocker arm pad and a valve tip. The method can include adjusting the contact point path to obtain a modified contact point path that satisfies a design objective of decreased valve tip wear or decreased valve tick. The method can include determining and outputting a custom contour for the rocker arm pad and the camshaft lobe based on the modified contact point path. The custom contoured camshaft lobe can companion with the custom contoured rocker arm pad to produce the modified contact point path for the specified design objective.
Abstract:
A fixed chain engine braking device includes a brake box, a driving mechanism and a braking mechanism. One upright blind hole and one horizontal blind hole are placed in the brake box, and the upright blind hole intersects the horizontal blind hole orthogonally. The driving mechanism includes a rolling ball and/or a driving piston placed in the horizontal blind hole, the braking mechanism includes a braking plunger placed in the upright blind hole. A fluid passage is placed in the brake box, and the fluid passage is communicated with the entry of the horizontal blind hole.
Abstract:
A bearing block comprises a camshaft in an internal combustion engine and a valve drive. The valve drive may include at least one rocker arm mounted on a rocker arm shaft, wherein the bearing block is formed concurrently with the mounting of the at least one rocker arm.
Abstract:
A pushrod assembly for an internal combustion engine comprises a pushrod having a first end and a second end, the first end being configured to receive valve actuation motions from a valve actuation motion source and the second end being configured to impart the valve actuation motions to a valve train component. The pushrod includes a resilient element engagement feature. The pushrod assembly includes a fixed support and a resilient element operatively connected to the resilient element engagement feature and the fixed support. The resilient element is configured to bias the pushrod, via the resilient element engagement feature, toward the valve actuation motion source. An internal combustion engine may comprise the pushrod assembly described herein. A follower assembly may be provided to maintain contact between second end of the pushrod and the valve train component.
Abstract:
A cam follower for a valve train of an internal combustion engine, the cam follower being formed as a lever, which is U-shaped in cross-section, and produced from steel sheet without machining, and which has a floor wall (3) and lateral walls (4 and 5) extending therefrom, wherein a valve stem support (10) is disposed as a groove (11) at one end of the lever in a surface of the floor wall (3) facing away from the lateral walls (4 and 5). Lateral guide walls (12 and 13) of the valve stem support (10) are formed by chipless shaping so as to extend from and counter to the lateral walls (4 and 5) and are connected to a support wall (14) that forms a valve stem support surface (10a). The valve stem support surface (10a) extends in a first plane (10b), which is spaced from a second plane (16a), which extends through an internal transition (15, 16) between the lateral walls (4 and 5) and the adjacent guide walls (12 and 13), in the direction of ends (19, 20) of the lateral walls (4 and 5). In order to reduce stress and resulting cracks, an inner radius R is provided at the transition (15 and 16), by which radius a free space (17, 18) is created between the lateral wall (4, 5) and the guide wall (12, 13), which free space narrows towards the end (19, 20) of the respective lateral wall (4, 5).