Abstract:
Provided is a method of controlling multiple beams directed to a structure in a workpiece, the method comprising generating a first illumination beam with a first light source and a second illumination beam with a second light source, projecting the first and second illumination beams onto a separate illumination secondary mirror, reflecting the first and second illumination beams onto an illumination primary mirror, the reflected first and second illumination beams projected onto the structure at a first and second angle of incidence respectively, the reflected first and second illumination beams generating a first and second detection beams respectively. The separate illumination secondary mirror is positioned relative to the illumination primary mirror so as make the first angle of incidence substantially the same or close to a calculated optimum first angle of incidence and make the second angle of incidence substantially the same or close to a calculated optimum second angle of incidence. The first and second detection beams are diffracted off the structure at the corresponding angle of incidence to a detection primary mirror, reflected onto a separate secondary detection mirror and other optical components on the detection path, and onto spectroscopic detectors.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.
Abstract:
The present invention provides a solar simulator that measures characteristics of multi junction photovoltaic devices for a short time, and a measuring method of a multi-junction photovoltaic devices using the simulator.The measurement method of the multi junction photovoltaic devices of the present invention includes the following processes: the process that the halogen lamp 13 emits a flash light and a top of a light pulse wave shape is controlled to be flat; the process that the xenon lamp 14 once or plural times emits a flash light which has the flat top and is shorter pulse than the flat area of the halogen lamp flash light while the top of a light pulse shape of the flash light from the halogen lamp is flat; and the process that the flash lights from the halogen lamp and the xenon lamp is irradiated to the photovoltaic devices 20 as the measurement object, and during the emission of the flash light from the xenon lamp, the load of the photovoltaic devices is controlled and the current and the voltage generating therefrom are measured at a single point or plural points.
Abstract:
In one embodiment, a quantum dot based radiation source includes a housing having a wall defining a cavity therein, a plurality of quantum dots disposed on an inner surface of the wall of the housing, and a radiation excitation source in optical communication with the housing and configured to output radiation to excite the plurality of quantum dots to emit radiation in a desired wavelength range. The quantum dot based radiation source can be used in a calibration system or calibrator, for example to calibrate a detector.
Abstract:
A measuring device for measuring optical properties of transparent substrates includes a light transmitter and/or light receiver comprising a hollow cylinder having a highly reflective and diffusely dispersive inner surface. The light transmitter comprises a light source arranged in its interior and a light exit opening at a distance from the light source. The light receiver has a light sensor instead of the light source, at a distance from a light entrance opening. The light source and light sensor are arranged at such a distance from the light exit opening and light entrance opening respectively, given a corresponding direction of propagation of the light, that light emitted by the light source or received by the light sensor and multiply reflected in the hollow cylinder emerges as diffuse light from the light exit opening or is incident on the light sensor.
Abstract:
It is an object of the present invention to provide a method and a device for automatically calibrating a light intensity measurement device. The device (1) includes an optical switch (3) for switching a route of output from an optical intensity modulator (2), an optical attenuator (5) arranged on a first waveguide (4), a second waveguide (6), a light intensity measurement device (7), a control device (8) for receiving light intensity information measured by the light intensity measurement device (7) and controlling the signal to be applied to the optical intensity modulator (2), and a signal source (9) for receiving a control signal of the control device (8) and adjusting the signal to be applied to the optical intensity modulator (2).
Abstract:
A method and apparatus for exposing a solar device to simulated environmental conditions is described. In one embodiment, a chamber is described. The chamber includes a frame defining a partial enclosure having an interior volume, the frame comprising a door selectively sealing an opening in the frame, a plurality of lighting devices coupled to the enclosure interior of an open wall, each of the plurality of lighting devices being positioned to direct light toward an upper surface of a platen disposed in the interior area, and a plurality of fan units positioned in an opening formed in a sidewall of the frame, each of the plurality of fan units positioned to direct ambient air flow from the outside of the enclosure toward the platen and between the plurality of lighting devices to exit through the open wall.
Abstract:
A mirror is provided with a light source window and an illumination window each establishing communicative connection between an inner face side and an outer side of a hemispherical unit. The light source window is an opening to which a light source OBJ to be measured is attached mainly. The illumination window is an opening for guiding a flux of light from a correcting light source used for measurement of self-absorption toward the inner face of the hemispherical unit. A self-absorption correcting coefficient of the light source OBJ is calculated based on an illuminance by a correcting flux of light in a case where the light source to be measured OBJ in a non-light emitting state is attached to the light source window and an illuminance by a correcting flux of light in a case where a calibration mirror is attached to the light source window.
Abstract:
System and method for testing solar cells is provided. The system includes a first light source configured to generate a first optical beam; a second light source configured to generate a second optical beam; a reflector for each light source, configured to collimate and direct each of the first optical beam and the second optical beam; a spectral filter assembly associated with each of the first light source and the second light source, the spectral filter assembly configured to (a) receive the first optical beam and the second optical beam (b) split each of the first optical beam and the second optical beam into “N” smaller optical beams, and (c) filter the “N” smaller optical beams; a re-imaging assembly for each spectral filter assembly configured to re-image the smaller “N” optical beam at a dichroic mirror that receives one or more N beams.
Abstract:
A light emission system that comprises a light source that comprises at least one light emitting diode (LED) that provides ultraviolet light. The system also comprises a controller that controls the intensity of the ultraviolet light provided by the light source such that the ultraviolet light provided by the light source simulates a vehicle exhaust plume.