Abstract:
Apparatus and methods for image processing using multiple imaging devices are provided. A first imaging device is configured to acquire a first image of a portion of a printed substrate and the second imaging device is configured to acquire a second image of a portion of the printed substrate. At least a portion of the first image and the second image are acquired from the same portion of the printed substrate at the same time. The first imaging device is configured to process color data from the first image using a first processing circuit of the first imaging device and the second imaging device is configured to process spatial information from the second image using a separate second processing circuit of the second imaging device.
Abstract:
A method for manufacturing a semiconductor device for detecting a physical amount distribution, the semiconductor device comprising unit components arrayed in a predetermined order, the unit components each including a unit signal generation portion for detecting an electromagnetic wave and outputting the corresponding unit signal. A diffraction grating is provided on the incident light side of a spectral image sensor, the diffraction grating including scatterers, slits, and scatterers disposed in that order. An electromagnetic wave is scattered by the scatterers to produce diffracted waves, and by using the fact that interference patterns between the diffracted waves change with wavelengths, signals are detected for respective wavelengths by photoelectric conversion elements in each photodiode group.
Abstract:
A spectral characteristic acquiring apparatus is provided which includes: an area dividing part; a spectrum separating part; a light receiving part; and a calculating part, wherein the calculating part includes a transformation matrix storing part that stores a transformation matrix used for calculating the spectral characteristic corresponding to electrical signals of a first diffraction pattern group including two or more adjacent diffraction patterns, and a spectral characteristic calculating part that calculates, based on the electrical signals of the first diffraction pattern group and the corresponding transformation matrix, the spectral characteristic at the locations of the image carrying medium corresponding to the apertures of the first diffraction pattern group.
Abstract:
A color separation filter (100), for a solid state image sensor includes a micro lens array (108) adapted to collect a full color spectrum light source (104), a mask layer (120) is attached to the micro lens array (108), the mask layer (120) includes plurality of openings (124), each opening is positioned in front of a single micro lens from the micro lens array. Additionally it includes a first array of prisms (204), each prism is positioned in front of each of the openings, a second array of prisms (212) is attached to the first array of prisms with an optical glue layer (208). Each prism from the first array of prisms is positioned in front of a prism from the second array of prisms to create a symmetrical optical path for the color spectrum light source (304).
Abstract:
An object of the present invention is to provide a spectral characteristic measuring system, a spectral characteristic measuring instrument, a data processing apparatus, and a program, which make it possible to appropriately correct an influence of an illumination light variation caused by a temperature rise in a semiconductor light-emitting element due to light emission, in a scanning type color measurement system or the like which sequentially measures many color samples 1n and in which a semiconductor light-emitting element such as an LED is used as a light source and a reference system is not provided.Spectral distributions of illumination lights which are measured before and after the color sample is measured are interpolated, to thereby estimate a spectral distribution of an illumination light at the time when a spectral distribution of the color sample is obtained. Spectral characteristics of the color sample are identified based on the spectral distribution of the reflected light or the transmitted light reflected by or transmitted through the color sample and the estimated spectral distribution.
Abstract:
An image processing apparatus for use with a printed image on a moving substrate is provided. The image processing apparatus includes a first imaging device configured to process spatial data which indicates a position of color patches printed along an edge portion of the printed image on the moving substrate. The image processing apparatus further includes a second imaging device configured to process at least one of densitometric data and colorimetric data of the color patches of the printed image. The first imaging device and second imaging device acquire image data from substantially the same position on the substrate at substantially the same time. The image processing apparatus further includes a processor configured to monitor a color of the printed image on the moving substrate based on the spatial data and the at least one of densitometric data and colorimetric data.
Abstract:
A scanner device for measuring the color properties of a measured object pixel by pixel has a support surface for the measured object, a color measuring head, a drive unit for moving the color measuring head above the support surface in at least one dimension thereof and for adjusting the height of the color measuring head in the direction perpendicular to the support surface, as well as a measurement and drive control unit which activates the drive unit and co-operates with the color measuring head. It is also equipped with an electronic distance control system which adjusts the distance of the color measuring head above the measurement point in the direction perpendicular to the support surface to a desired measuring distance for every measurement point by means of the drive unit. The electronic distance control system works with measurement values generated by the color measuring head and distance values computed from them. The scanner device is suitable for running high-precision measurements on even the smallest measurement fields without contact and no separate measurement sensor is needed for the distance control system.
Abstract:
In accordance with embodiments of the present invention, a goniospectrophotometer is provided for quickly obtaining a goniospectrum using a goniospectrophotometer. In some embodiments, a parabolic reflector is used to optically transform the angular space of a source at the parabola focus into a linear space and facilitate the use of a single diffracting element and area camera to simultaneously measure the angular spectrum of the source. Spectra corresponding to zenith angles of light reflection by the parabolic reflector can be acquired by a detector and analyzed in a computer.
Abstract:
Color measurement using compact devices is described herein. A color measurement device can include a diffraction grating that receives light reflected from a surface whose color is being measured. The diffraction grating is responsive to a control signal to split selected components from the reflected light and to admit the components in sequence to a sensor. The components can correspond to a selected wavelength or frequency of the reflected light. The sensor measures the energy or power level of each of the admitted components. The device can support determining a spectral representation of the color of the surface by generating output signals representing the various energy or power levels of each component of the light reflected from the surface.
Abstract:
Optical color sensor using diffractive elements. Semiconductor fabrication processes are used to form diffraction gratings as part of a photosensor. In a first embodiment, photosensors such as photodiodes are formed on a substrate, and diffraction gratings of fixed spacing are formed using the metallization layers common to semiconductor fabrication techniques. In a second embodiment, a linear photodiode array is formed on a substrate, and a diffraction grating with changing spacing is formed in the metal layers, providing a continuous color sensor. Other metal layers commonly used in semiconductor processing techniques may be used to provide apertures as needed.