Abstract:
Proposed is a light sensor (1), comprising at least one wavelength selective photo-detector (10), a lens (20) and an aperture (30).The wavelength selective photo-detector allows detecting light within a predefined wavelength range falling on the sensor. The lens project light on the photo-detector and the aperture defines a field of view of the light sensor. The photo-detector (10), the lens (20), and the aperture (30) are arranged in a telecentric configuration. Advantageously, this allows light to impinge on the wavelength selective photo-detector within a predefined range of angles irrespective of the direction of the light incident on the aperture, thus removing the angle dependent response of the wavelength selective photo-detector.
Abstract:
One embodiment of a method for calibrating a test color measurement device in conjunction with an emissive display includes measuring initial spectral sensitivities of at least four channels of the test color measurement device, linearly regressing the spectral sensitivities to a least-square best fit to CIE color matching functions, measuring CIE tristimulus values of test colors on the display using a reference color measurement device, measuring the CIE tristimulus values on the display using the test color measurement device, transforming the CIE tristimulus values measured by the test color measurement device to CIE tristimulus values that would have been measured by the reference color measurement device, using a nonlinear function with variable fitting coefficients, and storing initial fitting coefficient values that provide a least-square best fit of the CIE tristimulus values measured by the test color measurement device and the CIE tristimulus values measured by the reference color measurement device.
Abstract:
The apparatus for detecting arc occurred in chamber for plasma treatment used for manufacturing semiconductor or LCD panel comprises, a sensor module for sensing the arc; a processor module for processing data from the sensor module; wherein the sensor module includes RGB color sensor for sensing color data of the arc occurred in the chamber, the RGB color sensor is a sensor sensable at least one of red color or green color or blue color of the arc, the apparatus detects the arc by sensing data of color and chroma and brightness of the arc.
Abstract:
A method and a system for improving the psychovisual experience of watching a display are presented. Measurements on the ambient light are performed by a sensor element, from which characteristics of the ambient light are derived. These are subsequently applied in a light-source adjustment model to determine the output of the light-source element. Moreover, a method and a system for adjusting the output of a light-source element by a feed-back loop involving the output from the light-source element and the input to a sensor element are revealed. In addition, the sensor element is also employed for adjusting the output of an electronic display by applying the results of the measurements to a preference model.
Abstract:
A hand-held color measurement device is provided that includes a housing with an opto-measurement unit. The latter includes an optics array for receiving measurement light and a sensor array which is exposed to the measurement light, converts the measurement light into electrical measurement signals, and processes them to form digital measurement data. The measurement unit (M) consists of an aspherical input lens (L1), an aperture (B) for limiting the incident angular range, a depolarizing diffuser (D), a sensor lens (L2) and at least three sensors (S1, 52, S3) which are sensitized to different spectral ranges using color filters (F1, F2, F3). The aperture (B) lies substantially in the focal plane of the input lens (L1), and the diffuser (D) is arranged in the immediate vicinity of the aperture (B) and in the focal plane of the sensor lens (L2). The filters (F1, F2, F3) and the sensors (S1, S2, S3) are arranged close to the optical axis (A) and exposed to substantially parallel measurement light. The filters (F1, F2, F3) are configured to the spectral characteristics of the tristimulus color values XYZ according to CIE. For ambient light measurements, an additional diffuser (DE) can be placed in front of the input lens.
Abstract:
Semiconductor structures for optoelectronic sensors with an infrared (IR) blocking filter and methods for using such sensors with post-detection compensation for IR content that passes through the IR blocking filter are provided herein.
Abstract:
A method for adjusting output ratio of an optic sensor includes the following steps: measuring and obtaining a response spectrum of the optic sensor; analyzing optic response ratios of the response spectrum at different wavelengths; designing a ratio of light reception areas of the optic sensor, the design being carried out in accordance with three aspects of “the response spectrum” “a fixed proportional relationship being present between multiplication of the optic response ratio and the light reception area and an output of light current” and “a proportional relationship being present between the light reception area and the output of the light current”; and obtaining light current outputs of identical proportions (such as 1:1:1) or in a desired ratio (meaning any arbitrary ratio other than 1:1:1, such as 1:2:1, 1:2:3, or 3:4:5) in accordance with the design of the previous step.
Abstract:
In accordance with an example embodiment of the present invention, an apparatus is provided, including a photodetecting structure with one or more photon sensing layers of graphene; and an integrated graphene field effect transistor configured to function as a pre-amplifier for the photodetecting structure, where the graphene field effect transistor is vertically integrated to the photodetecting structure.
Abstract:
The present invention relates to a spectral detection device (100) for detecting spectral components of received light, wherein the spectral detection device (100) comprises a filtering structure (110) arranged to filter the received light and output light with a wavelength within a predetermined wavelength range; and a light sensor (120) arranged to detect the light output by the filtering structure (110), wherein the filtering structure (110) is variable to allow a variation of the predetermined wavelength range over time.The arrangement enables a compact spectral detection device that may be provided at a low cost.
Abstract:
Methods in a spectral measurement apparatus are disclosed. Light is received with a plurality of sensors. Each sensor generates an output signal having a frequency proportional to an intensity of light received by the sensor. First, second and third signals are generated each having a frequency proportional to an intensity of light received by a sensor of a wavelength or spectral band. A spectral characteristic of the received light is determined based on at least the first, second and third signals, which are are coupled to a processing element and input in parallel. The spectral characteristic is determined based on measuring a frequency or period of the at least first, second and third signals. Spectral data based on the determined spectral characteristic is generated by the processing element and displayed on a display device for perception by a viewer or transmitted to a data interface for transmission to an electronic device external to the spectral measurement apparatus.