Abstract:
A method of fabricating a film carrier is provided. The method comprises the steps of providing a film; forming a metallic layer on the film, patterning the metallic layer by etching to form a plurality of metallic leads; and, patterning the film by etching to form a plurality of openings so that processing time and manufacturing cost are reduced.
Abstract:
A plating resist film 2 is formed on a wiring board substrate 1 as a core material of a multilayer printed wiring board, then a through-hole 3 is formed, and through-hole conductor 4 is formed along the wall surface of the through-hole 3 and the through-hole surface of the plating resist film 2, so that protrusion portion 4a is formed in the through-hole conductor 4. The plating resist film 2 is then stripped off and a panel plating layer 5 is formed on the surface of the wiring board substrate 1 and the through-hole conductor 4 so that the through-hole 4 and the panel plating layer 5 are connected with the protrusion 4a coated, and thus the connection area can be increased.
Abstract:
A method for processing substrates, in which a photoresist layer is applied and structured on their surface. By blasting the substrate with particles, recesses are put into the surface of the substrate in those areas not covered by photoresist.
Abstract:
A fabric comprising at least one fiber strand comprising a plurality of fibers and having a resin compatible coating composition on at least a surface of the at least one fiber strand, wherein the at least one fiber strand has an Air Jet Transport Drag Force value of greater than 100,000 gram force per gram mass of strand as determined by a needle air jet nozzle unit having an internal air jet chamber having a diameter of 2 millimeters and a nozzle exit tube having a length of 20 centimeters at a strand feed rate of 274 meters per minute and an air pressure of 310 kiloPascals. A reinforced laminate comprising: (a) at least one matrix material; and (b) at least one fabric comprising at least one fiber strand comprising a plurality of fibers and having a resin compatible coating composition on at least a surface of the at least one fiber strand, wherein the at least one fiber strand has an Air Jet Transport Drag Force value of greater than 100,000 gram force per gram mass of strand as determined by a needle air jet nozzle unit having an internal air jet chamber having a diameter of 0.2 millimeters and a nozzle exit tube having a length of 20 centimeters at a strand feed rate of 274 meters per minute and an air pressure of 310 kiloPascals.
Abstract:
The present invention provides an electronic support comprising: (A) at least one woven fiber reinforcement material formed from at least one fiber free of basalt glass; and (B) at least one matrix material in contact with at least a portion of the at least one reinforcement material, the at least one matrix material comprising at least one non-fluorinated polymer and at least one inorganic filler, wherein the at least one inorganic filler comprises at least one non-hydratable, lamellar inorganic solid lubricant having a high electrical resistivity and wherein the at least one inorganic filler comprises at least 6 weight percent of a total combined weight of the at least one inorganic filler and the at least one matrix material on a total solids basis.
Abstract:
The present invention provides a method of forming an aperture in an electronic support, comprising: (A) positioning an electronic support in registry with an aperture forming device; and (B) forming an aperture at least partially through the electronic support with the aperture forming device while dispensing a fluid stream comprising at least one solid lubricant, proximate the aperture forming device during at least a position of the forming, such that the at least one solid lubricant contacts at least a portion of an interface between the aperture forming device and the electronic support.
Abstract:
The invention relates to a process for chemically etching a layer (2) having electrical conduction properties, on a transparent substrate (1) of the glass type. It includes at least one step of depositing a mask (3) comprising at least one hot-melt ink on the layer to be etched.
Abstract:
The disclosure relates to methods and solutions for precisely and rapidly etching a polyimide resin layer. Etching solutions of the present invention include 3-65% by weight of a diol containing 3 to 6 carbon atoms or a triol containing 4 to 6 carbon atoms, 10-55 % by weight of an alkali compound and water in an amount of 0.75-3.0 times the amount of the alkali compound, and can be used at 65null C. or more to rapidly etch a polyimide resin layer having an imidation degree of 50-98 % without unfavorably affecting the working atmosphere. Even if the resin layer is completely imidated after etching, the etching pattern of the resulting resin layer is not deformed with a decreased contamination by impurity ions as compared with those obtained using conventional etching solutions.
Abstract:
The present invention relates to a method of producing a laminate base material useful for preparing a prepreg or a laminate for electronic equipment such as printed board. The method comprises the steps of: (1) preparing a slurry comprising para-aramid fibers and curable phenolic resin fibers; (2) preparing a sheet from said slurry; (3) adding a resin binder to said sheet so as to bond the fibers with each other, thereby to form a combined non-woven fabric and (4) compressing said non-woven fabric under heating. According to the present invention, a prepreg or laminate is obtained which has an improved high-frequency characteristics and much less warp.
Abstract:
Provided is a composite film comprising a continuous phase of para-oriented aromatic polyamide and a phase of low-dielectric resin, said film having a dielectric constant at 1 MHz of not more than 3.2 and a linear thermal expansion coefficient at 200 to 300.degree. C. of within .+-.50.times.10.sup.-6 /.degree.C. The composite film has characteristics such as a low dielectric constant, favorable mechanical strength, homogeneous structure, light weight, and a low linear thermal expansion coefficient, and the film is useful as a base substrate for a flexible printed circuit board.