Abstract:
A flexible cable with a substrate divided into at least two sections is disclosed. The first section includes a first electrically conductive track and a first attach pad, while the section includes a second and third electrically conductive tracks, as well as a second attach pad. The first section is disposed on the second section to align the attach pads and connect the first electrically conductive track to the third electrically conductive track. The resulting flexible cable can be used with a low profile electrical device.
Abstract:
A substrate for mounting a preamp chip thereupon, fabricated using a stiffener layer made of a conductive material; an insulating layer provided over the circuitry area of the substrate; a circuitry made of a conductive material provided over the insulating layer; and a flap which is an extension of the stiffener layer having no insulating layer provided thereupon. The flap is fabricated to fold over the preamp chip to remove heat therefrom.
Abstract:
A light emitting module includes a carrier unit, a substrate unit, and a light emitting unit. The carrier unit includes at least one carrier body, and the carrier body has a mounting portion. The substrate unit includes at least one bendable substrate. The bendable substrate includes a plurality of substrate portions and a plurality of bending portions, the substrate portions are disposed on the mounting portion of the carrier body, and each bending portion is disposed between every two corresponding substrate portions. The light emitting unit includes a plurality of light emitting groups respectively disposed on the substrate portions, and each light emitting group includes at least one light emitting element electrically connected to each corresponding substrate portion. Because the substrate portions can be disposed on different planes after bending the substrate portions, thus light sources respectively generated by the light emitting elements can be projected toward different directions.
Abstract:
A multichip module comprises a flexible circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. The flexible circuit is enclosed and supported by two rigid frames, which may further be provided with protective heat spreading covers. Contact pads on the rigid frame(s) may be configured to engage a mating socket or they may be solderable to a printed circuit board.
Abstract:
There is provided a low-cost semiconductor device that commercial and quality-assured (inspected) chip size packages can be stacked and has a small co-planarity value and a high mounting reliability. A semiconductor device in which a flexible circuit substrate is adhered to at least a part of a lateral side of a semiconductor package, and the flexible circuit substrate, which is on a side facing solder balls of the semiconductor package, is folded at a region inside of an edge of the semiconductor package.
Abstract:
A substrate for mounting a preamp chip thereupon, fabricated using a stiffener layer made of a conductive material; an insulating layer provided over the circuitry area of the substrate; a circuitry made of a conductive material provided over the insulating layer; and a flap which is an extension of the stiffener layer having no insulating layer provided thereupon. The flap is fabricated to fold over the preamp chip to remove heat therefrom.
Abstract:
An electronic device includes a circuit board and an electrostatic protection structure. The circuit board has a top surface and a bottom surface opposite to the top surface. The electrostatic protection structure is positioned on the top surface of the circuit board. The electrostatic protection includes an insulating layer and a conducting layer coating on the insulating layer. Four ground terminals are formed on the bottom surface of the circuit board. The insulating layer includes a main portion and four first connecting portions extending from the main portion. The conducting layer on the four first connecting portion are connected to the four first ground terminal.
Abstract:
A flexible substrate includes a stripe-shaped substrate main body portion; a comb-like portion composed of a plurality of protrusions that extends from one end in the direction perpendicular to the longitudinal direction of the substrate main body portion, in the direction perpendicular to the longitudinal direction; and electronic devices that are arranged on the plurality of protrusions, respectively, in which the substrate main body portion and the comb-like portion are bendable.
Abstract:
In a fixing structure of a circuit board to a cooler, the circuit board includes a wiring part, electronic parts electrically connected to the wiring part and an insulating base material embedding the wiring part and the electronic parts therein. The insulating base material includes embedding portions in which the electronic parts are embedded and a bent portion having flexibility between the embedding portions. The cooler has fixing parts arranged in a first direction. The circuit board is fixed to the cooler while bending the bent portion. The bent portion is opposed to an end portion of one of the fixing parts, and each of the embedding portions is held between adjacent two fixing parts such that opposite surfaces of the embedding portion are closely in contact with surfaces of the adjacent two fixing parts.
Abstract:
The present invention relates to a bonding device for bonding a flexible printed circuit board (PCB) to a printhead assembly. The printhead assembly includes a printhead carrier and an ink ejection printhead carried by the carrier. The bonding device includes a support structure assembly and a first heater assembly arranged on the support structure assembly to be movable along a first path and configured to bond the flexible PCB to the printhead. A bending mechanism is arranged on the support structure and is configured to bend the bonded PCB. A second heater assembly is arranged on the support structure assembly to be movable along a second path and is configured to bond the bent PCB to the printhead carrier. A control system controls operation of the heater assemblies and the bending mechanism.