Abstract:
A multilayer printed wiring board including a core substrate, a first conductor layer on a first surface of the substrate, a second conductor layer on a second surface of the substrate, a third conductor layer inside the substrate between the first and second conductor layers, a conductive post connecting the third conductor layer with the first and second conductor layers, a first conductor circuit on the first surface of the substrate, a second conductor circuit on the second surface of the substrate, and a through hole formed through the substrate and connecting the first and second conductor circuits. The through hole is not connected to the third conductor layer, the third conductor layer has thickness larger than thicknesses of the first and second conductor layers, each of the first, second and third conductor layers forms one of power supply and ground layers, and the through hole forms a signal line.
Abstract:
A substrate for a light emitting element package provided with a thick metal section formed under a mounting position of a light emitting element, comprising:an insulating layer which is composed of a resin containing heat conductive fillers under the mounting position of said light emitting element and has a heat conductivity of 1.0 W/mK or more; and a metal layer disposed inside said insulating layer and having the thick metal section, wherein a heat conductive mask section is disposed at the top of said thick metal section.
Abstract:
A first insulating layer is formed on a suspension body. Wiring traces are formed in parallel at an interval on the first insulating layer. A second insulating layer is formed in a region on the first insulating layer on both sides of the wiring traces. A wiring trace is formed in a region on the second insulating layer on the side of the wiring trace. A wiring trace is formed in a region on the second insulating layer on the side of the wiring trace. A third insulating layer is formed on the first and second insulating layers to cover the wiring traces.
Abstract:
A method of manufacturing a printed circuit board includes the following steps (A) to (D). (A) Laminating a resin insulating layer on each of two sides of a core member to form a core substrate, (B) forming penetrating openings in the core substrate by applying laser beams, (C) forming a rough surface on the core substrate, and (D) providing a metal film for each penetrating opening to form through holes.
Abstract:
Disclosed is a printed circuit board having a buried solder bump, in which a circuit pattern and a solder bump formed on the circuit pattern are buried in an insulating layer, thus improving the degree of matching between the solder bump and the circuit pattern and obviating a need for an additional coining process of the solder bump. A manufacturing method thereof is also provided.
Abstract:
A wiring board includes: an uppermost wiring layer formed on a prescribed number of underlying wiring layers, a portion of the uppermost wiring layer being exposed and used as a pad for connection with a component to be mounted; and an insulation resin layer covering the uppermost wiring layer, wherein the thickness of the portion of the uppermost wiring layer is larger than that of other portions thereof.
Abstract:
A semiconductor device includes a substrate, a first recessed conductive layer embedded and recessed into a first surface of the substrate, and a first raised conductive layer disposed above the first surface. A first vertical offset exists between an upper surface of the first recessed conductive layer and an upper surface of the first raised conductive layer. The device includes a second recessed conductive layer embedded and recessed into a second surface of the substrate. The second surface of the substrate is opposite the first surface. The device includes a second raised conductive layer disposed beneath the second surface and an interconnect structure disposed on the first recessed and raised conductive layers and the second recessed and raised conductive layers. A second vertical offset exists between a lower surface of the second recessed conductive layer and a lower surface of the second recessed conductive layer.
Abstract:
An embedded circuit board structure and a fabricating process thereof are disclosed. The embedded circuit board structure comprises a dielectric layer and a metal layer. The dielectric layer comprises an indentation; the indentation is formed by a plurality of pits, and the pits are substantially perpendicular to the surface of the dielectric layer. The metal layer is formed within the indentation.
Abstract:
A method of making a semiconductor device comprises forming a first conductive layer recessed below a surface of a substrate. The method further comprises forming a second conductive layer raised above the surface of the substrate to create a vertical offset between the first and second conductive layers. The method further comprises forming an interconnect structure on the first and second conductive layers.
Abstract:
An electronic circuit board includes at least one conductor path and at least one component which is one of an electronic component, electric component and heat emitting component, and which is connected to the conductor path. At least one thermal capacitor is thermally connected to the conductor in vicinity to the at least one component. The at least one thermal capacitor is suitable for transmitting and/or buffering thermal energy of the at least one component.