Abstract:
A part having a large height contained in a module part is placed in a first cut-off portion formed in a part-mounting substrate to be mounted. Moreover, the module part itself is placed in a second cut-off portion formed in a mother board to be mounted.
Abstract:
According to the invention, a metal insertion piece (6) is provided in a solderable electrical connection element (1) with a thin support sheet (2), at least one metal conductor (3) and at least one free contact face (5), which may be joined to an associated connection face (11) of another component (12), by means of a soldered joint that can be made using a solder deposit (9), which metal insertion piece (6) passes through the connection element (1) and the support sheet (2) respectively in the region of the contact face (5) and is securely joined to this support sheet, which serves as a base for the solder deposit (9). Preferably, the insertion pieces (6) may be derived from conventional crimp attachments. They may also be used for mechanically fastening both the solder deposit (9) and an electrical conductor to the support sheet (2).
Abstract:
A process produces DNA corresponding to that of the DNA of the virus of B hepatitis. It comprises cloning in bacteria the latter DNA, previously repaired by means of the corresponding precursor nucleotides in the presence of a polymerase. Vectors contain the cloned DNA in their genomes. The cloned DNA is useful as a probe for detecting the presence of the virus of B hepatitis in biological samples, particularly blood or plasma. Its expression in bacteria provides a hybrid protein containing a protein fragment having vaccinating properties against hepatitis B. Nucleic acid of reduced size and a vector containing the nucleotide sequence of which DNA codes an immunogenic peptide sequence capable of inducing the generation of antibodies to the virus of viral hepatitis B. It comprises totally or partly the sequence of nucleotides represented in FIG. 9A. Application to the production by cloning in a bacterium of an immunogenic protein immunizing against hepatitis B, or application to the obtention of probes for the diagnosis of the presence of Dane particles in the serum.
Abstract:
In a mounting mechanism of a metal plate on a printed board housed in a portable telephone or the like, a metal plate connected with a terminal portion of a cell or the like is joined to a land via solder, and a cut-out portion is provided at a joining portion of the metal plate which is joined to the land, and the total length of fillets of the solder between the land and the joining portion is extended by the cut-out portion. Accordingly, the mounting strength of a metal plate mounted to the land disposed on the printed board can be improved.
Abstract:
There is provided a technique of connecting easily the lead terminal to the board of the module. A plurality of clip lead terminals each has at one end thereof clip portions which are connected electrically to connecting terminals by sandwiching an end portion of a board of a module and the connecting terminals formed thereon between clip members of said clip portions and has a lead portion at the other end thereof. The clip lead terminals are arranged so as to be spaced from one another in parallel with one another with the leading edges of the respective clip portions aligned on a straight line. The clip lead terminals are connected to one another through a tie bar and a guide as a connecting portion, respectively, whereby the connecting clip lead terminal 18 is formed as one-body. The lead portions are bent on every other one, leading end portions of the bent lead portions and leading end portions of the non-bent lead portions are in parallel with each other viewing from a side of the board.
Abstract:
A memory module comprising a plurality of identical wiring boards stacked in a multi-stage fashion provides with only one decoder mounted on one of the plurality of identical wiring boards and a plurality of inter-pattern connection means arranged on the wiring boards each for selectively connecting a first wiring pattern connected to said output of said decoder and a second wiring pattern connected to said at least one IC memory chip on each wiring board.
Abstract:
It is an object of the present invention to provide a highly reliable optical module circuit board having a sufficient mechanical strength with respect to an external stress. An optical module circuit board according to the present invention includes a flexible printed circuit having at least a multilayered structure in which a layer containing a conductive metal interconnection is sandwiched between insulating layers, wherein the flexible printed circuit includes a main body portion having the multilayered structure, a first surface mounted with an electronic component, and a second surface opposite to the first surface, a neck portion having the multilayered structure and extending from one end of the main body portion, and a head portion positioned at a distal end of the neck portion extending from the one end of the main body portion, having the multilayered structure, and mounted with an optical operation element and a bypass capacitor, Particularly, the neck portion defines the positional relationship between the main body portion and the head portion so as to give the circuit board a sufficient mechanical strength.
Abstract:
A variable-width lead interconnection structure disposed between a printed circuit board and a multichip module is presented. An edge clip with leads having a widened middle section is provided to optimize manufacturability and electrical performance. Each lead has a characteristic width and spacing of conventional leads where the leads are soldered to a multichip module or PCB. However, in between each end, each lead has a middle section that is widened to provide a characteristic impedance closer to the ideal 50 ohms, thus producing structures with better return loss at high frequencies.
Abstract:
A printed circuit board arrangement and method of making the same are provided, the printed circuit board arrangement comprising a first printed circuit board having a component carrying side and an opposite printed circuit side, a second printed circuit board having a component carrying side and an opposite printed circuit side, and securing structure securing the second printed circuit board to the first printed circuit board, the securing structure comprising a plurality of conductive jumper wires each having a generally L-shaped configuration and having opposite ends one of which is secured to the printed circuit side of the second printed circuit board and the other of which is secured to the printed circuit side of the first printed circuit board.
Abstract:
A flexible circuit suitable for high density applications and having a long flexural life is disclosed. A thin film metallic ground plane deposited on a dielectric substrate electrically shields the conductor traces in the flexible circuit and eliminates cross-talk between conductor traces without reducing the flexibility or the flexural life of the flexible circuit.