Abstract:
An electro component package is disclosed. The electro component package in accordance with an embodiment of the present invention includes a first package substrate having a first chip mounted on an upper surface thereof, the first chip having a through-via formed therein; a second package substrate being separated from the first package substrate and having a second chip mounted on an upper surface thereof; and a connection substrate having one end connected with an upper surface of the first chip and the other end connected with an upper surface of the second chip, the connection substrate electrically connecting the first chip with the second chip.
Abstract:
An embodiment of the present invention is a technique to reduce interconnect length between devices. A cavity is formed in a substrate having a substrate surface. The cavity has a depth. A first device having a device surface and a thickness is placed into the cavity. The thickness matches the depth such that the device surface is approximately planar with the substrate surface. The first device is attached to a second device via bumps on the second device.
Abstract:
An electronic system comprising: an electronic system support substrate for the attachment of components of the electronic system, the electronic system support substrate including electric signal propagation paths for the propagation of electric signals between the system components; at least a first and a second electronic components wherein at least the first electronic component is part of a module in mechanical and electrical connection with the electronic system support substrate, the module comprising a module substrate to which the first electronic component is at least mechanically connected, and an electric coupling between the first and the second electronic components, for the electric coupling allowing the first and the second electronic components exchange of electric signals. The electric coupling comprises a direct electric connection particularly formed by a flexible electrical interconnection member, between the first and the second electronic components, the electric connection being independent of the electronic system support substrate.
Abstract:
A microelectronic package and a method of forming the package. The package includes a first level package mounted to a carrier. The first level package includes a package substrate having a die side and a carrier side; and a microelectronic die mounted on the package substrate at the die side thereof. The carrier has a substrate side, and the first level package is mounted on the carrier at the substrate side thereof. A rigid body is attached to the carrier side of the substrate at an attachment location of the substrate and to the substrate side of the carrier at an attachment location of the carrier, the attachment location of the carrier being electrically unconnected, the rigid body being configured and disposed to provide structural support between the substrate and the carrier.
Abstract:
According to one embodiment, a semiconductor package comprises a substrate having one surface mounted with a semiconductor chip, and the other surface mounted with a plurality of arrayed external connection electrodes, a differential line pair provided on the surface of the substrate mounted with the semiconductor chip, and making a connection between the semiconductor chip and a predetermined pair of electrodes included in the external connection electrodes, and a coupling capacitor pair inserted between the differential lines.
Abstract:
An integrated circuit package system includes: providing a flexible circuit substrate; mounting an integrated circuit or an integrated circuit package over the flexible circuit substrate and connected to the flexible circuit substrate with interconnects; and encapsulating the integrated circuit or integrated circuit package with a mounded encapsulation having a first level and a second level, the second level having the flexible circuit substrate folded thereover.
Abstract:
Systems and methods for vertically stacking integrated circuit (IC) modules on a motherboard to conserve motherboard space and reduce power consumption are disclosed. IC modules can comprise processor circuitry, memory elements, communication circuitry, etc. Pins on each IC module can be directly inserted into lower IC module or into a socket layer that couples the IC modules. Heat generated by the IC modules can be dissipated by inserting heat dissipation layers into the vertical stack, between IC modules, or by placing a heat-dissipating sleeve around the stack. The IC modules themselves and/or heat-generating regions therein may be misaligned on their respective socket layers to further facilitate dissipating heat. Module stacks are scalable in that a user may add memory and/or processor modules as desired to increase device capability.
Abstract:
A base semiconductor component for a semiconductor component stack is disclosed. In one embodiment, the base semiconductor component has a semiconductor chip arranged centrally on a stiff wiring substrate. The wiring substrate has, in its edge regions, contact pads which are electrically connected to external contacts and at the same time to contact areas of the semiconductor chip and also to stack contact areas. The stack contact areas simultaneously form the upper side of the base semiconductor component and have an arrangement pattern corresponding to an arrangement pattern of external contacts of a semiconductor component to be stacked.
Abstract:
A chip component mounting structure is provided that has a chip component surface mounted on a pair of electrodes formed on a substrate. The electrodes have differing areas, and the chip component and t.
Abstract:
Semiconductor devices and methods for their assembly are described in which IC packages may be combined in novel configurations. A multi-package semiconductor device system and associated methods for its construction include a plurality of packaged semiconductor devices, each provided with at least one lateral electrical contact. The plurality of packaged semiconductor devices so provided are fixed in a coplanar configuration and have the adjacent lateral contacts coupled for operation in concert.