Abstract:
An integrated circuit (IC) package 100 comprises an IC 102 and leads 104 coupled to the IC. Each lead has a first end 106 configured to be coupled to the integrated circuit and a second end 108 configured to pass through one of a plurality of mounting holes 110 extending through a mounting board 112. The leads comprise at least one positioning lead 114 comprising a stop 118 being a continuous part of the positioning lead and having a lateral dimension 120 greater than a diameter 122 of a first hole 124 of the plurality of mounting holes. The leads further comprise at least one non-positioning lead 116 having a continuous uniformly shaped body 130 with a lateral dimension 132 less than a diameter 134 of a second hole 136 of the plurality of mounting holes. The stop limits an extension of the non-positioning lead through the second hole.
Abstract:
A method is described for producing an electrical connection between a plug element and a printed circuit board. A plug end of the at least one plug element is inserted in an opening extending through the printed circuit board. A solder, preferably in the form of solder paste, is applied essentially from above to at least parts of the opening or the area surrounding the opening. The connection between the board and the plug end is achieved by melting the solder. Prior to melting of the solder and/or application of the solder, the plug end is introduced into the opening in the printed circuit board essentially from below, and is held therein by a retaining arrangement such that during melting the solder enters the opening from above and contacts the plug end.
Abstract:
A method allowing for the inexpensive automated construction of interconnections between circuit boards is provided. According to the present invention, printed circuit pins are inserted in a circuit board from the top (component side). Provided the heads of the pins are thin enough to lie beneath a solder stencil, the pins may be pre-installed on the circuit board and solder applied to the pins at the same time solder is applied to other regions of the board. Thus, known surface mount techniques may be employed to form solder connections between the pins and conductive traces on the circuit board, which facilitates the automation of the previously manual operation of soldering the printed circuit pins separately.
Abstract:
A flat twisted electrical terminal is provided for connecting a first circuit element to a second circuit element on respective first and second circuit boards. The terminal includes a flat conductive member having a first end for connecting to a first circuit element and a second end for connecting to a second circuit element. The conductive member is axially twisted about its longitudinal axis.
Abstract:
A method for providing a mechanical/electrical interconnection between two circuit boards, and the interconnection components required therefore, include a pin and socket each having a tail portion, a shoulder portion and a head portion. The tail portion of the pin is sized so as to fit into a plated through hole of the first board, the head portion is sized so as to allow an automated device to capture the head portion and to rest on top of the plated through hole when inserted therein, and the shoulder portion is sized in relation to the plated through hole so as to rest inside the plated through hole and to allow a predetermined amount of solder to flow under the head portion and down into the plated through hole, but not as far down as the tail portion, thereby assisting in centering the pin in the through hole. Upon heating to a solder reflow temperature, a ring of solder, around the periphery of the head portion of the pin and the shoulder portion of the socket, flows under the head of the pin and the shoulder of the socket, thereby forming a soldered electrical connection between the pin and the first board, and the socket and the second board. By aligning the pin with the socket and inserting the tail portion of the pin into the cavity of the socket, a separable reliable mechanical and electrical interconnection is formed between the first board and the second board.
Abstract:
The invention is directed to techniques for forming a connection between a pin and a circuit board using a pin having protruding portions and grooved surfaces that extend between the protruding portions. The protruding portions (i) prevent the pin from inadvertently slipping through a via of the circuit board, and (ii) maintains the pin's proper position relative to the circuit board via. The grooved surfaces enable gas to vent from a cavity in the via during the solder process thus enabling solder to flow within the via and form a reliable and robust solder joint between the pin and the circuit board via. In one arrangement, the protruding portions and grooved surfaces are at both ends of the pin enabling the pin to be soldered between two circuit board sections. In one arrangement, the pin is simultaneously soldered to both circuit board sections. In another arrangement, the pin is initially soldered to one circuit board section, and subsequently soldered to another circuit board section. In either arrangement, the protruding portions of the pin, and in some arrangements close tolerances between the pin and the via, facilitate positioning of the pin in its proper location and the additional surface area provided by the grooved surfaces and the protruding portions (i.e., wetted metallic surfaces having a high affinity for solder) retain solder in the via cavities of the circuit board sections in order to form healthy solder joints. Accordingly, the invention is suitable for use in connecting multiple circuit board sections together at opposite ends of a pin.
Abstract:
A printed wiring board has a circuit substrate 6 having a conductor circuit 5 and a through hole 60, and also has a joining pin 1 inserted into the through hole. The joining pin is manufactured by using a material unmelted at a heating temperature in joining the joining pin to an opposite party pad 81. The joining pin is constructed by a joining head portion 11 greater than an opening diameter of the through hole and forming a joining portion to the opposite party pad, and a leg portion 12 having a size capable of inserting this leg portion into the through hole. The leg portion is inserted into the through hole and is joined to the through hole by a conductive material such as a soldering material 20, etc. A joining ball approximately having a spherical shape instead of the joining pin can be also joined to the through hole by the conductive material.
Abstract:
The circuit-board connecting terminal (1) includes a small-width portion (7) to be inserted into a through hole (22) formed in a circuit board (12), a pair of taper portions (8) respectively to be abutted against an open end (23) of the through hole (22), and a large-width portion (5) formed so as to be continuous with the taper portions (8), while the small-width portion (7) can be connected to the inside of the through hole (22) by soldering. In the circuit-board connecting terminal (1), the taper portions (8) have a steep inclination angle, and are located at the open end (23) of the through hole (22), so as not to advance almost into the through hole (22).
Abstract:
A solderless pin connection for a printed circuit board wherein a substrate is printed with polymer thick film. The substrate includes an inner surface defining a hole. The polymer thick film is applied along a top surface of the substrate and along the inner surface. The polymer thick film may additionally be applied along a bottom surface of the substrate with an additional layer along the inner surface. A pin, having a diameter less than a diameter of the hole, is press fit within the polymer thick film along the inner surface the pin. The pin is staked with respect to the substrate using a mechanical connection such as barbs or a folded portion on a staked end of the pin.
Abstract:
A leaded component (10) is provided with first and second leads (14 & 16). The leads are formed with stopping deviations (26 & 28) which prevent the leads from being inserted into a circuit board (38) beyond the stopping deviations. The leads may also be provided with retaining deviations (34 & 36) which function to retain the component on the circuit board. Further, the stopping deviations may be formed so as to indicate the polarity of a component, and finally, the stopping deviations may be provided with mounting portions (50 & 52) so that the leaded component may be surface mounted on a circuit board (54).