Abstract:
A diesel oxidation catalyst article is provided, which includes a substrate carrier having a plurality of channels adapted for gas flow and a catalyst composition positioned to contact an exhaust gas passing through each channel. The catalyst composition includes a platinum (Pt) component and a sulfur (S)-containing component impregnated onto a refractory metal oxide support and is effective to abate hydrocarbon and carbon monoxide, as well as oxidize NO to NO2 in the exhaust gas. Methods of making and using the catalyst article are also provided, as well as emission treatment systems comprising the catalyst article.
Abstract:
The present invention relates to methods for improving carbon capture using entrained catalytic-particles within an amine solvent. The particles are functionalized and appended with a CO2 hydration catalyst to enhance the kinetics of CO2 hydration and improve overall mass transfer of CO2 from an acid gas.
Abstract:
A carrier having at least three lobes, a first end, a second end, a wall between the ends and a non-uniform radius of transition at the intersection of an end and the wall is disclosed. A catalyst comprising the carrier, silver and promoters deposited on the carrier and useful for the epoxidation of olefins is also disclosed. A method for making the carrier, a method for making the catalyst and a process for epoxidation of an olefin with the catalyst are also disclosed.
Abstract:
The present invention is directed to an improved finished hydroisomerization catalyst manufactured from a first high nanopore volume (HNPV) alumina and a pore size distribution characterized by a full width at half-maximum, normalized to pore volume, of 15 to 25 nm·g/cc, and a second HNPV alumina having a pore size distribution characterized by a full width at half-maximum, normalized to pore volume, of 5 to 15 nm·g/cc. Their combination yields a HNPV base extrudate having a low particle density as compared to a conventional base extrudates.
Abstract:
A method of manufacturing a honeycomb structured body, includes providing an application jig. A sealing material paste is put on a peripheral surface of a pillar-shaped ceramic block. The application jig is set in such a manner that a first principal surface of the application jig faces upward and a second principal surface of the application jig faces downward. The ceramic block is placed inside a second opening section of the application jig. The ceramic block is passed through an opening section of the application jig so that a face defining the second opening section spreads an entire peripheral surface of the ceramic block with the sealing material paste to manufacture a honeycomb structured body with a peripheral sealing material layer formed on the peripheral surface of the ceramic block.
Abstract:
In a method of preparing a ruthenium-containing catalyst on a non-conductive metal oxide support comprises dissolving one or more ruthenium precursor compounds in an liquid organic polyol, combining the thus obtained solution with (a) nano-powder(s) of one or more metal oxides in a ratio of moles metal oxide(s) to moles ruthenium atoms in the one or more ruthenium precursor compounds of about 0:1 to about 6:1, the metal oxide nano-powder(s) having a surface area of from about 5 to about 300 m2/g and a point of zero charge (PZC) of pH 5.5 or higher, agitating the thus obtained mixture, adding pre-shaped alumina support pellets to the agitated mixture, which is than heated at a temperature of about 50° C. to the boiling point of the organic polyol, until the reaction is finished, cooling the mixture and combining it with an aqueous solution of NaNO3 and/or KNO3, agitating the resultant mixture, separating the solvent and the solids, and drying the thus obtained solid pellets of alumina, or alumina and the metal oxide(s) of the nano-powder(s) coated with ruthenium and an additional amount Na and/or K ions. Also disclosed is the supported ruthenium-containing catalyst obtainable by the method and the use thereof in decomposing ammonia into nitrogen and oxygen.
Abstract:
The present invention relates to a process for the regeneration of a catalyst comprising a titanium-containing zeolite, said catalyst having been used in a process for the preparation of an olefin oxide and having phosphate deposited thereon, said process for the regeneration comprising the steps: (a) separating the reaction mixture from the catalyst, (b) washing the catalyst obtained from (a) with liquid aqueous system; (c) optionally drying the catalyst obtained from (b) in a gas stream comprising an inert gas at a temperature of less than 300° C.; (d) calcining the catalyst obtained from (c) in a gas stream comprising oxygen at a temperature of at least 300° C.
Abstract:
The present invention discloses a novel mesoporous gold deposited oxidation catalyst of formula: XAu-M0.1Ce0.85Zr0.05O2 wherein X=0.01-10%, M is selected from Cu, Co or Mn and process for the preparation thereof by photodeposition method.
Abstract:
The present invention is directed to an improved finished hydroisomerization catalyst manufactured from a first high nanopore volume (HNPV) alumina having a broad pore size distribution (BPSD), and a second HNPV alumina having narrow pore size distribution (NPSD). Their combination yields a HNPV base extrudate having higher total nanopore volume with a bimodal pore size distribution as compared to a conventional base extrudates.
Abstract:
A carrier having at least three lobes, a first end, a second end, a wall between the ends and a non-uniform radius of transition at the intersection of an end and the wall is disclosed. A catalyst comprising the carrier, silver and promoters deposited on the carrier and useful for the epoxidation of olefins is also disclosed. A method for making the carrier, a method for making the catalyst and a process for epoxidation of an olefin with the catalyst are also disclosed.